264 research outputs found

    China’s Artificial Intelligence Innovation:A Top-Down National Command Approach?

    Get PDF
    China’s open embracing of the age of artificial intelligence (AI) has attracted considerable academic and media attention. Many argue that China has taken advantage of its national approach to contest for AI supremacy and geopolitical dominance. The relevant analyses assume China’s AI plans as being Beijing’s coherent top‐down geopolitically driven national strategy, reflecting Chinese leaders’ global ambitions. This article argues that these views are mistaken. It argues that China’s AI plans are primarily driven by contestation and the struggle for resources among domestic stakeholders who are economically motivated and have little awareness of the bigger geopolitical picture. Instead of a top‐down command approach, China’s national AI plan is an upgrade of existing local AI initiatives to the national level, reflecting a bottom‐up development. This article suggests that the existing analyses vastly exaggerate: (1) Beijing’s capacity to coordinate domestic capital and actors towards a unified, specific strategic objective; and (2) the extent of China’s AI advancement and its geopolitical threat, triggering unnecessary anxiety among China’s near competitors

    Rapamycin Ameliorates Kidney Fibrosis by Inhibiting the Activation of mTOR Signaling in Interstitial Macrophages and Myofibroblasts

    Get PDF
    Interstitial fibrosis is an inevitable outcome of all kinds of progressive chronic kidney disease (CKD). Emerging data indicate that rapamycin can ameliorate kidney fibrosis by reducing the interstitial infiltrates and accumulation of extra cellular matrix (ECM). However, the cellular mechanism that regulates those changes has not been well understood yet. In this study, we revealed the persistent activation of mammalian target of rapamycin (mTOR) signaling in the interstitial macrophages and myofibroblasts, but rarely in injured proximal epithelial cells, CD4+ T cells, neutrophils, or endothelial cells, during the development of kidney fibrosis. Administration of rapamycin to unilateral ureteral obstruction (UUO) mice significantly suppressed the immunoreactivity of mTOR signaling, which decreased the inflammatory responses and ECM accumulation in the obstructed kidneys. Isolated macrophages from rapamycin-treated obstructed kidneys presented less inflammatory activity than vehicle groups. In vitro study confirmed that rapamycin significantly inhibited the fibrogenic activation of cultured fibroblasts (NIH3T3 cells), which was induced by the stimulation of TGF-β1. Further experiment revealed that rapamycin did not directly inhibit the fibrogenesis of HK2 cells with aristolochic acid treatment. Our findings clarified that rapamycin can ameliorate kidney fibrosis by blocking the mTOR signaling in interstitial macrophages and myofibroblasts

    ApoSense: a novel technology for functional molecular imaging of cell death in models of acute renal tubular necrosis

    Get PDF
    Purpose: Acute renal tubular necrosis (ATN), a common cause of acute renal failure, is a dynamic, rapidly evolving clinical condition associated with apoptotic and necrotic tubular cell death. Its early identification is critical, but current detection methods relying upon clinical assessment, such as kidney biopsy and functional assays, are insufficient. We have developed a family of small molecule compounds, ApoSense, that is capable, upon systemic administration, of selectively targeting and accumulating within apoptotic/necrotic cells and is suitable for attachment of different markers for clinical imaging. The purpose of this study was to test the applicability of these molecules as a diagnostic imaging agent for the detection of renal tubular cell injury following renal ischemia. Methods: Using both fluorescent and radiolabeled derivatives of one of the ApoSense compounds, didansyl cystine, we evaluated cell death in three experimental, clinically relevant animal models of ATN: renal ischemia/reperfusion, radiocontrast-induced distal tubular necrosis, and cecal ligature and perforation-induced sepsis. Results: ApoSense showed high sensitivity and specificity in targeting injured renal tubular epithelial cells in vivo in all three models used. Uptake of ApoSense in the ischemic kidney was higher than in the non-ischemic one, and the specificity of ApoSense targeting was demonstrated by its localization to regions of apoptotic/necrotic cell death, detected morphologically and by TUNEL staining. Conclusion: ApoSense technology should have significant clinical utility for real-time, noninvasive detection of renal parenchymal damage of various types and evaluation of its distribution and magnitude; it may facilitate the assessment of efficacy of therapeutic interventions in a broad spectrum of disease states

    Narrating China’s Belt and Road Initiative

    Get PDF
    This article studies the formation process of China's belt and road initiative (BRI) – the most important Chinese foreign policy initiative under Xi Jinping. It argues that the BRI was put forward as a broad policy idea that was subsequently developed with relatively concrete content. During this process, the shifting international landscapes have gradually driven the BRI from a periphery strategy into a global initiative. By examining the case of Jiangsu Province, this article also shows how Chinese local governments have actively deployed their preferred narratives to influence and (re‐)interpret the BRI guidelines of the central government in order to advance their own interests. As a result, this produces a variety of competing, ambiguous and contradictory policy narratives of the BRI within China, which undermines the Chinese central government's monopoly on the BRI narratives. This leaves the BRI as a very vague and broad policy slogan that is subject to change and open to interpretation. In this regard, the existing analyses – that consider the BRI as Beijing's masterplan to achieve its geopolitical goals – pay insufficient attention to the BRI's domestic contestation and overstate the BRI's geopolitical implications

    Why do authoritarian regimes provide public goods? Policy communities, external shocks and ideas in China’s rural social policy making

    Get PDF
    Recent research on authoritarian regimes argues that they provide public goods in order to prevent rebellion. This essay shows that the ‘threat of rebellion’ alone cannot explain Chinese party-state policies to extend public goods to rural residents in the first decade of the twenty-first century. Drawing on theories of policy making, it argues that China’s one-party regime extended public goods to the rural population under the influence of ideas and policy options generated by policy communities of officials, researchers, international organisations and other actors. The party-state centre adopted and implemented these ideas and policy options when they provided solutions to external shocks and supported economic development goals. Explanations of policies and their outcomes in authoritarian political systems need to include not only ‘dictators’ but also other actors, and the ideas they generate

    Microvesicles Derived from Mesenchymal Stem Cells Enhance Survival in a Lethal Model of Acute Kidney Injury

    Get PDF
    Several studies demonstrated that treatment with mesenchymal stem cells (MSCs) reduces cisplatin mortality in mice. Microvesicles (MVs) released from MSCs were previously shown to favor renal repair in non lethal toxic and ischemic acute renal injury (AKI). In the present study we investigated the effects of MSC-derived MVs in SCID mice survival in lethal cisplatin-induced AKI. Moreover, we evaluated in vitro the effect of MVs on cisplatin-induced apoptosis of human renal tubular epithelial cells and the molecular mechanisms involved. Two different regimens of MV injection were used. The single administration of MVs ameliorated renal function and morphology, and improved survival but did not prevent chronic tubular injury and persistent increase in BUN and creatinine. Multiple injections of MVs further decreased mortality and at day 21 surviving mice showed normal histology and renal function. The mechanism of protection was mainly ascribed to an anti-apoptotic effect of MVs. In vitro studies demonstrated that MVs up-regulated in cisplatin-treated human tubular epithelial cells anti-apoptotic genes, such as Bcl-xL, Bcl2 and BIRC8 and down-regulated genes that have a central role in the execution-phase of cell apoptosis such as Casp1, Casp8 and LTA. In conclusion, MVs released from MSCs were found to exert a pro-survival effect on renal cells in vitro and in vivo, suggesting that MVs may contribute to renal protection conferred by MSCs

    HIV-1 Promotes Renal Tubular Epithelial Cell Protein Synthesis: Role of mTOR Pathway

    Get PDF
    Tubular cell HIV-infection has been reported to manifest in the form of cellular hypertrophy and apoptosis. In the present study, we evaluated the role of mammalian target of rapamycin (mTOR) pathway in the HIV induction of tubular cell protein synthesis. Mouse proximal tubular epithelial cells (MPTECs) were transduced with either gag/pol-deleted NL4-3 (HIV/MPTEC) or empty vector (Vector/MPTEC). HIV/MPTEC showed enhanced DNA synthesis when compared with Vector/MPTECs by BRDU labeling studies. HIV/MPTECs also showed enhanced production of β-laminin and fibronection in addition to increased protein content per cell. In in vivo studies, renal cortical sections from HIV transgenic mice and HIVAN patients showed enhanced tubular cell phosphorylation of mTOR. Analysis of mTOR revealed increased expression of phospho (p)-mTOR in HIV/MPTECs when compared to vector/MPTECs. Further downstream analysis of mTOR pathway revealed enhanced phosphorylation of p70S6 kinase and associated diminished phosphorylation of eEF2 (eukaryotic translation elongation factor 2) in HIV/MPTECs; moreover, HIV/MPTECs displayed enhanced phosphorylation of eIF4B (eukaryotic translation initiation factor 4B) and 4EBP-1 (eukaryotic 4E binding protein). To confirm our hypothesis, we evaluated the effect of rapamycin on HIV-induced tubular cell downstream signaling. Rapamycin not only attenuated phosphorylation of p70S6 kinase and associated down stream signaling in HIV/MPTECs but also inhibited HIV-1 induced tubular cell protein synthesis. These findings suggest that mTOR pathway is activated in HIV-induced enhanced tubular cell protein synthesis and contributes to tubular cell hypertrophy

    Regulation of expression of Na+,K+-ATPase in androgen-dependent and androgen-independent prostate cancer

    Get PDF
    The β1-subunit of Na+,K+-ATPase was isolated and identified as an androgen down-regulated gene. Expression was observed at high levels in androgen-independent as compared to androgen-dependent (responsive) human prostate cancer cell lines and xenografts when grown in the presence of androgens. Down-regulation of the β1-subunit was initiated at concentrations between 0.01 nM and 0.03 nM of the synthetic androgen R1881 after relatively long incubation times (> 24 h). Using polyclonal antibodies, the concentration of β1-subunit protein, but not of the α1-subunit protein, was markedly reduced in androgen-dependent human prostate cancer cells (LNCaP-FGC) cultured in the presence of androgens. In line with these observations it was found that the protein expression of total Na+,K+-ATPase in the membrane (measured by 3H-ouabain binding) was also markedly decreased. The main function of Na+,K+-ATPase is to maintain sodium and potassium homeostasis in animal cells. The resulting electrochemical gradient is facilitative for transport of several compounds over the cell membrane (for example cisplatin, a chemotherapeutic agent experimentally used in the treatment of hormone-refractory prostate cancer). Here we observed that a ouabain-induced decrease of Na+,K+-ATPase activity in LNCaP-FGC cells results in reduced sensitivity of these cells to cisplatin-treatment. Surprisingly, androgen-induced decrease of Na+,K+-ATPase expression, did not result in significant protection against the chemotherapeutic agent. © 1999 Cancer Research Campaig
    corecore