108 research outputs found
A Novel G Protein-Coupled Receptor of Schistosoma mansoni (SmGPR-3) Is Activated by Dopamine and Is Widely Expressed in the Nervous System
Schistosomes have a well developed nervous system that coordinates virtually every activity of the parasite and therefore is considered to be a promising target for chemotherapeutic intervention. Neurotransmitter receptors, in particular those involved in neuromuscular control, are proven drug targets in other helminths but very few of these receptors have been identified in schistosomes and little is known about their roles in the biology of the worm. Here we describe a novel Schistosoma mansoni G protein-coupled receptor (named SmGPR-3) that was cloned, expressed heterologously and shown to be activated by dopamine, a well established neurotransmitter of the schistosome nervous system. SmGPR-3 belongs to a new clade of “orphan” amine-like receptors that exist in schistosomes but not the mammalian host. Further analysis of the recombinant protein showed that SmGPR-3 can also be activated by other catecholamines, including the dopamine metabolite, epinine, and it has an unusual antagonist profile when compared to mammalian receptors. Confocal immunofluorescence experiments using a specific peptide antibody showed that SmGPR-3 is abundantly expressed in the nervous system of schistosomes, particularly in the main nerve cords and the peripheral innervation of the body wall muscles. In addition, we show that dopamine, epinine and other dopaminergic agents have strong effects on the motility of larval schistosomes in culture. Together, the results suggest that SmGPR-3 is an important neuronal receptor and is probably involved in the control of motor activity in schistosomes. We have conducted a first analysis of the structure of SmGPR-3 by means of homology modeling and virtual ligand-docking simulations. This investigation has identified potentially important differences between SmGPR-3 and host dopamine receptors that could be exploited to develop new, parasite-selective anti-schistosomal drugs
Coordinated Activation of Candidate Proto-Oncogenes and Cancer Testes Antigens via Promoter Demethylation in Head and Neck Cancer and Lung Cancer
Background: Epigenetic alterations have been implicated in the pathogenesis of solid tumors, however, proto-oncogenes activated by promoter demethylation have been sporadically reported. We used an integrative method to analyze expression in primary head and neck squamous cell carcinoma (HNSCC) and pharmacologically demethylated cell lines to identify aberrantly demethylated and expressed candidate proto-oncogenes and cancer testes antigens in HNSCC. Methodology/Principal Findings: We noted coordinated promoter demethylation and simultaneous transcriptional upregulation of proto-oncogene candidates with promoter homology, and phylogenetic footprinting of these promoters demonstrated potential recognition sites for the transcription factor BORIS. Aberrant BORIS expression correlated with upregulation of candidate proto-oncogenes in multiple human malignancies including primary non-small cell lung cancers and HNSCC, induced coordinated proto-oncogene specific promoter demethylation and expression in non-tumorigenic cells, and transformed NIH3T3 cells. Conclusions/Significance: Coordinated, epigenetic unmasking of multiple genes with growth promoting activity occurs i
Study protocol: a double blind placebo controlled trial examining the effect of domperidone on the composition of breast milk [NCT00308334]
BACKGROUND: Domperidone, a drug that enhances upper gastric motility, is an anti-dopaminergic medication that also elevates prolactin levels. It has been shown to safely increase the milk supply of lactating women. To date, researchers have analyzed the effects of domperidone on lactating woman with respect to the quantity of their milk production, adverse effects, and drug levels in the breast milk. However, the effect of domperidone on the macronutrient composition of breast milk has not been studied and current guidelines for fortification of human milk for premature infants do not distinguish between those women using or those not using domperidone. The purpose of this study is to evaluate the effect of domperidone (given to lactating mothers of very preterm infants) on the macronutrient composition of breast milk. METHODS/DESIGN: Mothers of infants delivered at less than 31 weeks gestation, who are at least 3 weeks postpartum, and experiencing lactational failure despite non-pharmacological interventions, will be randomized to receive domperidone (10 mg three times daily) or placebo for a 14-day period. Breast milk samples will be obtained the day prior to beginning treatment and on days 4, 7 and 14. The macronutrient (protein, fat, carbohydrate and energy) and macromineral content (calcium, phosphorus and sodium) will be analyzed and compared between the two groups. Additional outcome measures will include milk volumes, serum prolactin levels (measured on days 0, 4, and 10), daily infant weights and breastfeeding rates at 2 weeks post study completion and at discharge. Forty-four participants will be recruited into the study. Analysis will be carried out using the intention to treat approach. DISCUSSION: If domperidone causes significant changes to the nutrient content of breast milk, an alteration in feeding practices for preterm infants may need to be made in order to optimize growth, nutrition and neurodevelopment outcomes
A short history of the 5-HT2C receptor: from the choroid plexus to depression, obesity and addiction treatment
This paper is a personal account on the discovery and characterization of the 5-HT2C receptor (first known as the 5- HT1C receptor) over 30 years ago and how it translated into a number of unsuspected features for a G protein-coupled receptor (GPCR) and a diversity of clinical applications. The 5-HT2C receptor is one of the most intriguing members of the GPCR superfamily. Initially referred to as 5-HT1CR, the 5-HT2CR was discovered while studying the pharmacological features and the distribution of [3H]mesulergine-labelled sites, primarily in the brain using radioligand binding and slice autoradiography. Mesulergine (SDZ CU-085), was, at the time, best defined as a ligand with serotonergic and dopaminergic properties. Autoradiographic studies showed remarkably strong [3H]mesulergine-labelling to the rat choroid plexus. [3H]mesulergine-labelled sites had pharmacological properties different from, at the time, known or purported 5-HT receptors. In spite of similarities with 5-HT2 binding, the new binding site was called 5-HT1C because of its very high affinity for 5-HT itself. Within the following 10 years, the 5-HT1CR (later named 5- HT2C) was extensively characterised pharmacologically, anatomically and functionally: it was one of the first 5-HT receptors to be sequenced and cloned. The 5-HT2CR is a GPCR, with a very complex gene structure. It constitutes a rarity in theGPCR family: many 5-HT2CR variants exist, especially in humans, due to RNA editing, in addition to a few 5-HT2CR splice variants. Intense research led to therapeutically active 5-HT2C receptor ligands, both antagonists (or inverse agonists) and agonists: keeping in mind that a number of antidepressants and antipsychotics are 5- HT2CR antagonists/inverse agonists. Agomelatine, a 5-HT2CR antagonist is registered for the treatment of major depression. The agonist Lorcaserin is registered for the treatment of aspects of obesity and has further potential in addiction, especially nicotine/ smoking. There is good evidence that the 5-HT2CR is involved in spinal cord injury-induced spasms of the lower limbs, which can be treated with 5-HT2CR antagonists/inverse agonists such as cyproheptadine or SB206553. The 5-HT2CR may play a role in schizophrenia and epilepsy. Vabicaserin, a 5-HT2CR agonist has been in development for the treatment of schizophrenia and obesity, but was stopped. As is common, there is potential for further indications for 5-HT2CR ligands, as suggested by a number of preclinical and/or genome-wide association studies (GWAS) on depression, suicide, sexual dysfunction, addictions and obesity. The 5-HT2CR is clearly affected by a number of established antidepressants/antipsychotics and may be one of the culprits in antipsychotic-induced weight gain
Alpha- Or Beta-trifiuoromethyl Epoxysulfones - New C-3 Reagents for Heterocyclization
The syntheses of alpha- and beta-trifluoromethyl epoxysulfones 1 and 2 are described. Compound 1 reacts with nucleophiles and bis-nucleophiles to furnish trifluoromethyl ketones and triRuoromethyl heterocycles in good yield, while its isomer 2 leads to the opposite thiazole regioisomers with thioamides
Diastereoselective cycloadditions of new trifluoromethyl azomethine ylides derived from trifluorothioacetamides
Two methods of generation of new trifluoromethyl azomethine ylides are described: by heating N,N-dimethyl-bis(methylthio)-orthotrifluoroacetamide 2 or by deprotonation of trifluoromethyl thioamidium salts. Trapping by dipolarophiles leads to 2-trifluoromethyl pyrrolidines and pyrrolizidines with high diastereoselectivity. Copyright (C) 1996 Published by Elsevier Science Lt
Synthesis and reactivity of trifluorodithioacetates derived from trifluorothioacetamides
A general synthesis of trifluorodithioacetates is described by thiolysis of trifluorothioamidium salts, derived from trifluorothioacetamides. The reactivity of these CF3 bearing C-2 building blocks has been investigated towards nucleophiles and in cycloaddition reactions. Trifluorodithioacetates react with dienes to give thiopyrans and with diazo compounds to give trifluoromethyl vinyl sulphides via thiirane intermediates. With amines, trifluorodithioacetates give rise to trifluorothioacetamides while thiols add by thiophilic attack leading to new trifluoroethane dithioacetal disulphide. Two equivalents of phosphite furnish one equivalent of thiophosphate and one of phosphorylated trifluoroethane
- …