148 research outputs found

    Quenched Chiral Perturbation Theory for Vector Mesons

    Get PDF
    We develop quenched chiral perturbation theory for vector mesons made of light quarks, in the limit where the vector meson masses are much larger than the pion mass. We use this theory to extract the leading nonanalytic dependence of the vector meson masses on the masses of the light quarks. By comparing with analogous quantities computed in ordinary chiral perturbation theory, we estimate the size of quenching effects, observing that in general they can be quite large. This estimate is relevant to lattice simulations, where the ρ\rho mass is often used to set the lattice spacing.Comment: 18 pages, 8 figures, uses REVTeX and epsf.st

    Enhanced chiral logarithms in partially quenched QCD

    Get PDF
    I discuss the properties of pions in ``partially quenched'' theories, i.e. those in which the valence and sea quark masses, mVm_V and mSm_S, are different. I point out that for lattice fermions which retain some chiral symmetry on the lattice, e.g. staggered fermions, the leading order prediction of the chiral expansion is that the mass of the pion depends only on mVm_V, and is independent of mSm_S. This surprising result is shown to receive corrections from loop effects which are of relative size mSlnmVm_S \ln m_V, and which thus diverge when the valence quark mass vanishes. Using partially quenched chiral perturbation theory, I calculate the full one-loop correction to the mass and decay constant of pions composed of two non-degenerate quarks, and suggest various combinations for which the prediction is independent of the unknown coefficients of the analytic terms in the chiral Lagrangian. These results can also be tested with Wilson fermions if one uses a non-perturbative definition of the quark mass.Comment: 14 pages, 3 figures, uses psfig. Typos in eqs (18)-(20) corrected (alpha_4 is replaced by alpha_4/2

    Phylogenetic Signals of Salinity and Season in Bacterial Community Composition Across the Salinity Gradient of the Baltic Sea

    Get PDF
    Understanding the key processes that control bacterial community composition has enabled predictions of bacterial distribution and function within ecosystems. In this study, we used the Baltic Sea as a model system to quantify the phylogenetic signal of salinity and season with respect to bacterioplankton community composition. The abundances of 16S rRNA gene amplicon sequencing reads were analyzed from samples obtained from similar geographic locations in July and February along a brackish to marine salinity gradient in the Baltic Sea. While there was no distinct pattern of bacterial richness at different salinities, the number of bacterial phylotypes in winter was significantly higher than in summer. Bacterial community composition in brackish vs. marine conditions, and in July vs. February was significantly different. Non-metric multidimensional scaling showed that bacterial community composition was primarily separated according to salinity and secondly according to seasonal differences at all taxonomic ranks tested. Similarly, quantitative phylogenetic clustering implicated a phylogenetic signal for both salinity and seasonality. Our results support that global patterns of bacterial community composition with respect to salinity and season are the result of phylogenetically clustered ecological preferences with stronger imprints from salinity

    A Lattice QCD Analysis of the Strangeness Magnetic Moment of the Nucleon

    Get PDF
    The outcome of the SAMPLE Experiment suggests that the strange-quark contribution to the nucleon magnetic moment, G_M^s(0), may be greater than zero. This result is very difficult to reconcile with expectations based on the successful baryon magnetic-moment phenomenology of the constituent quark model. We show that careful consideration of chiral symmetry reveals some rather unexpected properties of QCD. In particular, it is found that the valence u-quark contribution to the magnetic moment of the neutron can differ by more than 50% from its contribution to the Xi^0 magnetic moment. This hitherto unforeseen result leads to the value G_M^s(0) = -0.16 +/- 0.18 with a systematic error, arising from the relatively large strange quark mass used in existing lattice calculations, that would tend to shift G_M^s(0) towards small positive values.Comment: RevTeX, 20 pages, 12 figure

    Restless pions: orbifold boundary conditions and noise suppression in lattice QCD

    Full text link
    The study of one or more baryons in lattice QCD is severely hindered by the exponential decay in time of the signal-to-noise ratio. The rate at which the signal-to-noise decreases is a function of the the pion mass. More precisely, it depends on the minimum allowed pion energy in the box, which, for periodic boundary conditions, is equal to its mass. We propose a set of boundary conditions, given by a "parity orbifold'' construction, which eliminates the zero momentum pion modes, raising the minimum pion energy without altering the QCD ground state, and thereby improving the signal-to-noise ratio of (multi)-baryon correlation functions at long Euclidean times. We discuss variations of these "restless pions" boundary conditions and focus on their impact on the study of nuclear forces.Comment: 15 pages, 4 figure

    Chiral Logs in Quenched QCD

    Get PDF
    The quenched chiral logs are examined on a 163×2816^3 \times 28 lattice with Iwasaki gauge action and overlap fermions. The pion decay constant fπf_{\pi} is used to set the lattice spacing, a=0.200(3)fma = 0.200(3) {\rm fm}. With pion mass as low as 180MeV\sim 180 {\rm MeV}, we see the quenched chiral logs clearly in mπ2/mm_{\pi}^2/m and fPf_P, the pseudoscalar decay constant. We analyze the data to determine how low the pion mass needs to be in order for the quenched one-loop chiral perturbation theory (χ\chiPT) to apply. With the constrained curve-fitting method, we are able to extract the quenched chiral log parameter δ\delta together with other low-energy parameters. Only for mπ300MeVm_{\pi} \leq 300 {\rm MeV} do we obtain a consistent and stable fit with a constant δ\delta which we determine to be 0.24(3)(4) (at the chiral scale Λχ=0.8GeV\Lambda_{\chi}=0.8 {\rm GeV}). By comparing to the 123×2812^3 \times 28 lattice, we estimate the finite volume effect to be about 2.7% for the smallest pion mass. We also fitted the pion mass to the form for the re-summed cactus diagrams and found that its applicable region is extended farther than the range for the one-loop formula, perhaps up to mπ500600m_{\pi} \sim 500-600 MeV. The scale independent δ\delta is determined to be 0.20(3) in this case. We study the quenched non-analytic terms in the nucleon mass and find that the coefficient C1/2C_{1/2} in the nucleon mass is consistent with the prediction of one-loop χ\chiPT\@. We also obtain the low energy constant L5L_5 from fπf_{\pi}. We conclude from this study that it is imperative to cover only the range of data with the pion mass less than 300MeV\sim 300 {\rm MeV} in order to examine the chiral behavior of the hadron masses and decay constants in quenched QCD and match them with quenched one-loop χ\chiPT\@.Comment: 37 pages and 24 figures, pion masses are fitted to the form for the re-summed cactus diagrams, figures added, to appear in PR

    Quenched hadron spectroscopy with improved staggered quark action

    Get PDF
    We investigate light hadron spectroscopy with an improved quenched staggered quark action. We compare the results obtained with an improved gauge plus an improved quark action, an improved gauge plus standard quark action, and the standard gauge plus standard quark action. Most of the improvement in the spectroscopy results is due to the improved gauge sector. However, the improved quark action substantially reduces violations of Lorentz invariance, as evidenced by the meson dispersion relations.Comment: New references adde

    Quenched Chiral Perturbation Theory for Heavy Baryons

    Get PDF
    Heavy baryon chiral perturbation theory is extended to include the effects of quenching. In this framework the leading nonanalytic dependence of the heavy baryon masses on the light quark masses is studied. The size of quenching effects is estimated by comparing the results of quenched and ordinary chiral perturbation theories. It is found that in general they can be large. This estimate is relevant to lattice simulations of the heavy baryon masses.Comment: 14 pages, 5 figures, uses REVTe

    Baryon Spectroscopy in Lattice QCD

    Full text link
    We review recent developments in the study of excited baryon spectroscopy in lattice QCD. After introducing the basic methods used to extract masses from correlation functions, we discuss various interpolating fields and lattice actions commonly used in the literature. We present a survey of results of recent calculations of excited baryons in quenched QCD, and outline possible future directions in the study of baryon spectra.Comment: Contribution to Lecture Notes in Physics on Lattice Hadron Physics, 43 pages, 11 figures, 3 table
    corecore