27 research outputs found

    Theory of the spin-galvanic effect and the anomalous phase-shift φ0\varphi_{0} in superconductors and Josephson junctions with intrinsic spin-orbit coupling

    Get PDF
    Due to the spin-orbit coupling (SOC) an electric current flowing in a normal metal or semiconductor can induce a bulk magnetic moment. This effect is known as the Edelstein (EE) or magneto-electric effect. Similarly, in a bulk superconductor a phase gradient may create a finite spin density. The inverse effect, also known as the spin-galvanic effect, corresponds to the creation of a supercurrent by an equilibrium spin polarization. Here, by exploiting the analogy between a linear-in-momentum SOC and a background SU(2) gauge field, we develop a quasiclassical transport theory to deal with magneto-electric effects in superconducting structures. For bulk superconductors this approach allows us to easily reproduce and generalize a number of previously known results. For Josephson junctions we establish a direct connection between the inverse EE and the appearance of an anomalous phase-shift φ0\varphi_{0} in the current-phase relation. In particular we show that φ0\varphi_{0} is proportional to the equilibrium spin-current in the weak link. We also argue that our results are valid generically, beyond the particular case of linear-in-momentum SOC. The magneto-electric effects discussed in this study may find applications in the emerging field of coherent spintronics with superconductors.Comment: v1: article version of the preprints arXiv:1408.4533 and arXiv:1409.4563 in letter format, with far more results and details. v2: some typos and mistakes corrected, new presentation of the derivation at all temperature in the ballistic regime (section VI), including a new fig.2 to illustrate this section. v3: accepted version, with extra reference

    Ballistic Josephson junctions in the presence of generic spin dependent fields

    Full text link
    Ballistic Josephson junctions are studied in the presence of a spin-splitting field and spin-orbit coupling. A generic expression for the quasi-classical Green's function is obtained and with its help we analyze several aspects of the proximity effect between a spin-textured normal metal (N) and singlet superconductors (S). In particular, we show that the density of states may show a zero-energy peak which is a generic consequence of the spin-dependent couplings in heterostructures. In addition we also obtain the spin current and the induced magnetic moment in a SNS structure and discuss possible coherent manipulation of the magnetization which results from the coupling between the superconducting phase and the spin degree of freedom. Our theory predicts a spin accumulation at the S/N interfaces, and transverse spin currents flowing perpendicular to the junction interfaces. Some of these findings can be understood in the light of a non-Abelian electrostatics.Comment: published versio

    Long ranged singlet proximity effect in ferromagnetic nanowires

    Full text link
    Recently a long ranged superconductor/ferromagnet (S/F) proximity effect has been reported in Co crystalline nanowires [1, Nature, 6 389 (2010)]. Since the authors of [1] take care to avoid the existence of magnetic domains, the triplet character of the long ranged proximity effect is improbable. Here we demonstrate that in the one-dimensional ballistic regime the standard singlet S/F proximity effect becomes long ranged. We provide an exact solution for the decay of the superconducting correlations near critical temperature (TcT_{c}) and for arbitrary impurities concentration. In particular we find a specific regime, between the diffusive and ballistic ones, where the decay length is simply the electronic mean-free path. Finally possible experiments which could permit to elucidate the nature of the observed long ranged proximity effect in Co nanowires are discussed.Comment: 4 page

    Electromotive interference in a mechanically oscillating superconductor: generalized Josephson relations and self-sustained oscillations of a torsional SQUID

    Get PDF
    We consider the superconducting phase in a moving superconductor and show that it depends on the displacement flux. Generalized constitutive relations between the phase of a superconducting interference device (SQUID) and the position of the oscillating loop are then established. In particular, we show that the Josephson current and voltage depend on both the SQUID position and velocity. The two proposed relativistic corrections to the Josephson relations come from the macroscopic displacement of a quantum condensate according to the (non-inertial) Galilean covariance of the Schr\"{o}dinger equation, and the kinematic displacement of the quasi-classical interfering path. In particular, we propose an alternative demonstration for the London rotating superconductor effect (also known as the London momentum) using the covariance properties of the Schr\"{o}dinger equation. As an illustration, we show how these electromotive effects can induce self-sustained oscillations of a torsional SQUID, when the entire loop oscillates due to an applied dc-current.Comment: Accepted versio

    FFLO state in thin superconducting films

    Full text link
    We present the analysis of the inhomogeneous Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) superconducting state in thin superconducting films in the parallel magnetic field. For the tetragonal crystal symmetry (relevant to CeCoIn5_{5} - the most probable candidate for the FFLO state formation) we predict a very peculiar in-plane angular dependence of the FFLO critical field due to the orbital effect. In the uniform superconducting state the critical field should be isotropic. The magnetic field pins also the direction of the FFLO modulation permitting thus to study the critical current anisotropy. Our calculations reveal a strong critical current anisotropy in the FFLO state in sharp contrast with the usual superconducting state. The predicted characteristic anisotropies of the critical field and critical current may provide an unambiguous probe of the FFLO phase formation.Comment: 7 pages, 2 figures, to be published in Europhys. Let

    Magnetic moment manipulation by a Josephson current

    Full text link
    We consider a Josephson junction where the weak-link is formed by a non-centrosymmetric ferromagnet. In such a junction, the superconducting current acts as a direct driving force on the magnetic moment. We show that the a.c. Josephson effect generates a magnetic precession providing then a feedback to the current. Magnetic dynamics result in several anomalies of current-phase relations (second harmonic, dissipative current) which are strongly enhanced near the ferromagnetic resonance frequency

    Composite excitation of Josephson phase and spin waves in Josephson junctions with ferromagnetic insulator

    Full text link
    Coupling of Josephson-phase and spin-waves is theoretically studied in a superconductor/ferromagnetic insulator/superconductor (S/FI/S) junction. Electromagnetic (EM) field inside the junction and the Josephson current coupled with spin-waves in FI are calculated by combining Maxwell and Landau-Lifshitz-Gilbert equations. In the S/FI/S junction, it is found that the current-voltage (I-V) characteristic shows two resonant peaks. Voltages at the resonant peaks are obtained as a function of the normal modes of EM field, which indicates a composite excitation of the EM field and spin-waves in the S/FI/S junction. We also examine another type of junction, in which a nonmagnetic insulator (I) is located at one of interfaces between S and FI. In such a S/I/FI/S junction, three resonant peaks appear in the I-V curve, since the Josephson-phase couples to the EM field in the I layer.Comment: 16 pages, 5 figure

    Nonsinusoidal current-phase relation in strongly ferromagnetic and moderately disordered SFS junctions

    Full text link
    We study the Josephson current in a junction comprising two superconductors linked by a strong ferromagnet in presence of impurities. We focus on a regime where the electron (and hole) motion is ballistic over the exchange length and diffusive on the scale of the weak link length. The current-phase relation is obtained for both two- and three dimensional ferromagnetic weak links. In the clean limit, the possibility of temperature-induced 0- transitions is demonstrated while the corresponding critical current versus temperature dependences are also studied.Comment: 10 pages, 7 figure

    Topologically protected localised states in spin chains

    Get PDF
    We consider spin chain families inspired by the Su, Schrieffer and Hegger (SSH) model. We demonstrate explicitly the topologically induced spatial localisation of quantum states in our systems. We present detailed investigations of the effects of random noise, showing that these topologically protected states are very robust against this type of perturbation. Systems with such topological robustness are clearly good candidates for quantum information tasks and we discuss some potential applications. Thus, we present interesting spin chain models which show promising applications for quantum devices

    Superconducting spintronics

    Get PDF
    The interaction between superconducting and spin-polarized orders has recently emerged as a major research field following a series of fundamental breakthroughs in charge transport in superconductor-ferromagnet heterodevices which promise new device functionality. Traditional studies which combine spintronics and superconductivity have mainly focused on the injection of spin-polarized quasiparticles into superconducting materials. However, a complete synergy between superconducting and magnetic orders turns out to be possible through the creation of spin-triplet Cooper pairs which are generated at carefully engineered superconductor interfaces with ferromagnetic materials. Currently, there is intense activity focused on identifying materials combinations which merge superconductivity and spintronics in order to enhance device functionality and performance. The results look promising: it has been shown, for example, that superconducting order can greatly enhance central effects in spintronics such as spin injection and magnetoresistance. Here, we review the experimental and theoretical advances in this field and provide an outlook for upcoming challenges related to the new concept of superconducting spintronics.J.L. was supported by the Research Council of Norway, Grants No. 205591 and 216700. J.W.A.R. was supported by the UK Royal Society and the Leverhulme Trust through an International Network Grant (IN-2013-033).This is the accepted manuscript. The final version is available at http://www.nature.com/nphys/journal/v11/n4/full/nphys3242.html
    corecore