8 research outputs found
Nanostructured Lipid Carriers As A Strategy To Improve The In Vitro Schistosomiasis Activity Of Praziquantel
Praziquantel (PZQ) is a pyrazinoisoquinoline anthelmintic that was discovered in 1972 by Bayer Germany. Currently, due to its efficacy, PZQ is the drug of choice against all species of Schistosoma. Although widely used, PZQ exhibits low and erratic bioavailability because of its poor water solubility. Nanostructured lipid carriers (NLC), second-generation solid lipid nanoparticles, were developed in the 1990s to improve the bioavailability of poorly water soluble drugs. The aim of this study was to investigate nanostructured lipid carriers as a strategy to improve the efficacy of PZQ in S. mansoni treatment. We prepared NLC2 and NLC4 by adding seventy percent glycerol monostearate (GMS) as the solid lipid, 30% oleic acid (OA) as the liquid lipid and two surfactant systems containing either soybean phosphatidylcholine/poloxamer (PC/P-407) or phosphatidylcholine/Tween 60 (PC/T60), respectively. The carriers were characterized by nuclear magnetic resonance, differential scanning calorimetry, thermogravimetric analysis and Fourier transform-infrared spectroscopy. The safety profile was evaluated using red cell hemolysis and in vitro cytotoxicity assays. The results showed that the encapsulation of PZQ in NLC2 or NLC4 improved the safety profile of the drug. Treatment efficacy was evaluated on the S. mansoni BH strain. PZQ-NLC2 and PZQ-NLC4 demonstrated an improved efficacy in comparison with free PZQ. The results showed that the intestinal transport of free PZQ and PZQ-NLC2 was similar. However, we observed that the concentration of PZQ absorbed was smaller when PZQ was loaded in NLC4. The difference between the amounts of absorbed PZQ could indicate that the presence of T60 in the nanoparticles (NLC4) increased the rigid lipid matrix, prolonging release of the drug. Both systems showed considerable in vitro activity against S. mansoni, suggesting that these systems may be a promising platform for the administration of PZQ for treating schistosomiasis.151761772Barsoum, R.S., Esmat, G., El-Baz, T., (2013) Journal of Advanced Research, 4, p. 433De Oliveira, R.N., Rehder, V.L.G., Santos Oliveira, A.S., Júnior, Í.M., De Carvalho, J.E., De Ruiz, A.L.T.G., De Lourdes Sierpe Jeraldo, V., Allegretti, S.M., (2012) Experimental Parasitology, 132, p. 135Allegretti, S.M., Oliveira, C.N.F., Oliveira, R.N., Frezza, T.F., Rehder, V.L.G., (2012), 27. , www.intechopen.com/books/schistosomiasisBygott, J.M., Chiodini, P.L., (2009) Acta Tropica, 111, p. 95Zhang, S.-M., Coultas, K.A., (2013) International Journal for Parasitology: Drugs and Drug Resistance, 3, p. 28Gryseels, B., Polman, K., Clerinx, J., Kestens, L., (2006) The Lancet, 368, p. 1106Doenhoff, M.J., Cioli, D., Utzinger, J., (2008) Curr. Opin. Infect. Dis., 1, p. 659Stelma, F.F., Talla, I., Sow, S., Kongs, A., Niang, M., Polman, K., Deelder, A.M., Gryseels, B., (1995) Am. J. Trop. Med. Hyg., 53, p. 167Mourao, S.C., Costa, P.I., Salgado, H.R., Gremiao, M.P., (2005) Int. J. Pharm., 295, p. 157Frezza, T.F., Madi, R.R., Banin, T.M., Pinto, M.C., Souza, A.L.R., Gremião, M.P.D., Allegretti, S.M., (2007) Journal of Basic and Applied Pharmaceutical Sciences, 28, p. 209Yang, L., Geng, Y., Li, H., Zhang, Y., You, J., Chang, Y., (2009) Pharmazie, 64, p. 86Souza, A., Andreani, T., Nunes, F., Cassimiro, D., Almeida, A., Ribeiro, C., Sarmento, V., Souto, E., (2012) J. Therm. Anal. Calorim., 108, p. 353Almeida, A., Souza, A., Cassimiro, D., Gremião, M., Ribeiro, C., Crespi, M., (2012) J. Therm. Anal. Calorim., 108, p. 333Souza, A.L.R., Kiill, C.P., Santos, F.K., Luz, G.M., Silva, H.R., Chorilli, M., Gremião, M.P.D., (2012) Current Nanoscience, 8, p. 512Santos, F.K., Oyafuso, M.H., Kiill, C.P., Gremiao, M.P.D., Chorilli, M., (2013) Current Nanoscience, 9, p. 159Cinto, P., Souza, A., Lima, A., Chaud, M., Gremião, M., (2009) Chromatographia, 69, p. 213Frezza, T.F., Gremião, M.P.D., Zanotti-magalhães, E.M., Magalhães, L.A., Souza, A.L.R., Allegretti, S.M., (2013) Acta TropicaCampos, F.D.S., Cassimiro, D.L., Crespi, M.S., Almeida, A.E., Gremião, M.P.D., (2013) Brazilian Journal of Pharmaceutical Sciences, 49, p. 75Müller, R.H., Petersen, R.D., Hommoss, A., Pardeike, J., (2007) Advanced Drug Delivery Reviews, 59, p. 522Han, F., Li, S., Yin, R., Liu, H., Xu, L., (2008) Colloids Surf., A: Physicochemical and Engineering Aspects, 315, p. 210Martins, S., Silva, A.C., Ferreira, D.C., Souto, E.B., (2009) Journal Biomedical Nanotechnology, 5, p. 76Silva, A.C., Santos, D., Ferreira, D.C., Souto, E.B., (2009) Pharmazie, 64, p. 177Jumaa, M., Kleinebudde, P., Müller, B.W., (1999) Pharmaceutica Acta Helvetiae, 73, p. 293Huang, Z.R., Hua, S.C., Yang, Y.L., Fang, J.Y., (2008) Acta Pharmacol. Sin., 29, p. 1094Olivier, L., Stirewalt, M.A., (1952) The Journal of Parasitology, 38, p. 19Smithers, S.R., Terry, R.J., (1965) Parasitology, 55, p. 695Xiao, S.H., Keiser, J., Chollet, J., Utzinger, J., Dong, Y., Endriss, Y., Vennerstrom, J.L., Tanner, M., (2007) Antimicrob. Agents Chemother., 51, p. 1440Cassimiro, D.L., Ferreira, L.M.B., Capela, J.M.V., Crespi, M.S., Ribeiro, C.A., (2013) Journal Of Pharmaceutical and Biomedical Analysis, 73, p. 24Garnero, C., Zoppi, A., Genovese, D., Longhi, M., (2010) Carbohydrate Research, 345, p. 2550Bottom, R., (2008) Thermogravimetric Analysis, Principles and Applications of Thermal Analysis, p. 87. , Blackwell Publishing LtdJores, K., Mehnert, W., Mader, K., (2003) Pharm. Res., 20, p. 1274Ali, H., El-Sayed, K., Sylvester, P.W., Nazzal, S., (2010) Colloids Surf. B Biointerfaces, 77, p. 286Pople, P.V., Singh, K.K., (2011) Eur. J. Pharm. Biopharm., 79, p. 82De Jesus, M.B., Pinto, L.M.A., Fraceto, L.F., Takahata, L.A.Y., Jaime, P.E.C., (2006) J. Pharm. Biomed. Anal., 41, p. 1428Hi, E.-S., Aa, A.-B., (1998) Analytical Profiles of Drug Substances and Excipients, 25, p. 463Schepmann, D., Blaschke, G., (2001) J. Pharm. Biomed. Anal., 26, p. 791Malheiros, S.V.P., Meirelles, N.C., De Paula, E., (2000) Biophys. Chem., 83, p. 89Raina, N., Goyal, A.K., Pillai, C.R., Rath, G., (2013) Indian Journal of Pharmaceutical Education and Research, 47, p. 123Abbasalipourkabir, R., Salehzadeh, A., Abdullah, R., (2011) Biotechnology, 10, p. 528Chiann, C., Gonçalves, J.E., Gai, M.N.M.N., Storpirtis, S.S., (2009) Biofarmacotécnica, 1, p. 352. , Guanabara Koogan, São PauloBaldrick, P., (2000) Regulatory Toxicology and Pharmacology, 32, p. 210Custodio, J.M., Wu, C.Y., Benet, L.Z., (2008) Advanced Drug Delivery Reviews, 60, p. 717Disch, J., Katz, N., Pereira E Silva, Y., De Gouvea Viana, L., Andrade, M.O., Rabello, A., (2002) Acta Trop, 81, p. 133Cioli, D., Pica-Mattoccia, L., (2003) Parasitol. Res., 90, p. 22Oliveira, C.N.F.D., Oliveira, R.N.D., Frezza, T.F., Rehder, V.L.C.G., Allegretti, S.M., (2013) Tegument of Schistosoma Mansoni as A Therapeutic Target, Parasitic Diseases-SchistosomiasisVan Hellemond, J.J., Retra, K., Brouwers, J.F., Van Balkom, B.W., Yazdanbakhsh, M., Shoemaker, C.B., Tielens, A.G., (2006) Int. J. Parasitol., 36, p. 691Barth, L.R., Fernandes, A.P., Rodrigues, V., (1996) Rev. Inst. Med. Trop. Sao Paulo, 38, p. 423Wilson, T.H., Wiseman, G., (1954) J. Physiol., 123, p. 116Balimane, P.V., Chong, S., Morrison, R.A., (2000) J. Pharmacol. Toxicol. Methods, 44, p. 30
Organic cocoa extract -loaded surfactant-based systems intended to skin bioadhesion
<div><p>ABSTRACT This study was to develop, characterize, and evaluate the physical-chemical stability, in vitro antioxidant activity and in vitro safety profile of liquid crystalline systems (LCS) and microemulsions (MEs) with and without organic cocoa (OC) extract. LCS stabilized by surfactant polyoxyethylene 20 cetyl ether, containing water and oleic acid were studied. LCS and MEs were characterized using polarized light microscopy, small angle X-ray scattering, rheology and in vitro bioadhesion, and were evaluated for a period of 30 days by visual aspects, centrifuge test, pH value and relative density. PLM and SAXS assays showed the presence of domains of MEs, cubic and hexagonal mesophasephases, varying the proportions of the components of the formulations; where in the addition of the extract did not change rheological behavior of the formulations. All of the formulations were stable in the period analyzed and presented higher bioadhesive strength. In vitro antioxidant activity suggests that LCS and MEs presented a high capacity to maintain the antioxidant activity of OC extract. The results showed that the incorporation of OC in LCS improved the safety profile, according to cytotoxicity assays of systems may be a promising platform to OC extract for topical application for the potential treatment of skin disorders.</p></div