828 research outputs found

    Effect Of Phase Angle On Tandem Flapping-wing Power Generation

    Get PDF
    Two tandem wings undergoing two-dimensional sinusoidal and non-sinusoidal pitch and plunge motions are studied experimentally in a water channel at a chord-based Reynolds number of 10,000. The hindwing operates in the wake of the forewing, and its performance is affected by the vortices shed by the forewing in a tandem wing application. The vortex-wing and vortex-vortex interactions are affected by the changes in the phase angle between the fore and the hind wings. This study investigates how the changes in phase angle between the motions of the two wings play a role on the leading edge vortex (LEV) formations on the hindwing and the resulting effects on the power coefficient and the efficiency. The instantaneous lift and torque are measured by a force sensor; the velocity fields are captured by a digital particle image velocimetry (PIV) system. Sinusoidal and non-sinusoidal oscillations consisting of a pitch leading plunge motion with ϕ = 90° phase angle are used for the fore and hind wing motions. Different phase angles between the fore and hindwings are tested for the tandem configuration in the range of ψ = 0°–360° with an increment of 45°. The pitch pivot point to point distance of two chords was set between the fore and hindwings. It is found that the phase angle between the tandem foils determines the timing and the sign of the forewing-shed LEV when the hindwing encounters this LEV. Such an interaction affects the LEV formation, growth and shedding on the hindwing and results in a change in power generation performance of the hindwing. The results further show that at this specific distance between the wings, the maximum power coefficient and efficiency occur when the phase angle between the motions of the tandem wings is near ψ = 135° for the sinusoidal pitching and plunging.This study is funded by the Scientific and Technological Research Council of Turkey (TUBITAK) Grant 214M385

    Gas and dust from solar metallicity AGB stars

    Get PDF
    We study the asymptotic giant branch (AGB) evolution of stars with masses between 1 M8.5 M1~M_{\odot} - 8.5~M_{\odot}. We focus on stars with a solar chemical composition, which allows us to interpret evolved stars in the Galaxy. We present a detailed comparison with models of the same chemistry, calculated with a different evolution code and based on a different set of physical assumptions. We find that stars of mass 3.5 M\ge 3.5~M_{\odot} experience hot bottom burning at the base of the envelope. They have AGB lifetimes shorter than 3×105\sim 3\times 10^5 yr and eject into their surroundings gas contaminated by proton-capture nucleosynthesis, at an extent sensitive to the treatment of convection. Low mass stars with 1.5 MM3 M1.5~M_{\odot} \le M \le 3~M_{\odot} become carbon stars. During the final phases the C/O ratio grows to 3\sim 3. We find a remarkable agreement between the two codes for the low-mass models and conclude that predictions for the physical and chemical properties of these stars, and the AGB lifetime, are not that sensitive to the modelling of the AGB phase. The dust produced is also dependent on the mass: low-mass stars produce mainly solid carbon and silicon carbide dust, whereas higher mass stars produce silicates and alumina dust. Possible future observations potentially able to add more robustness to the present results are also discussed.Comment: 27 pages, 24 figures; accepted for publication in MNRA

    Post-AGB stars in the Magellanic Clouds and neutron-capture processes in AGB stars

    Full text link
    We explore modifications to the current scenario for the slow neutron capture process in asymptotic giant branch (AGB) stars to account for the Pb deficiency observed in post-AGB stars of low metallicity ([Fe/H] ~ -1.2) and low initial mass (~ 1 - 1.5 Msun) in the Large and Small Magellanic Clouds. We calculated the stellar evolution and nucleosynthesis for a 1.3 Msun star with [Fe/H]=-1.3 and tested different amounts and distributions of protons leading to the production of the main neutron source within the 13C-pocket and proton ingestion scenarios. No s-process models can fully reproduce the abundance patterns observed in the post-AGB stars. When the Pb production is lowered the abundances of the elements between Eu and Pb, such as Er, Yb, W, and Hf, are also lowered to below those observed. Neutron-capture processes with neutron densities intermediate between the s and the rapid neutron-capture processes may provide a solution to this problem and be a common occurrence in low-mass, low-metallicity AGB stars.Comment: 6 pages, 4 figures. To be published in Astronomy and Astrophysic

    Partial mixing and the formation of 13C pockets in AGB stars: effects on the s-process elements

    Get PDF
    The production of the elements heavier than iron via slow neutron captures (the s process) is a main feature of the contribution of asymptotic giant branch (AGB) stars of low mass (< 5 Msun) to the chemistry of the cosmos. However, our understanding of the main neutron source, the 13C(alpha,n)16O reaction, is still incomplete. It is commonly assumed that in AGB stars mixing beyond convective borders drives the formation of 13C pockets. However, there is no agreement on the nature of such mixing and free parameters are present. By means of a parametric model we investigate the impact of different mixing functions on the final s-process abundances in low-mass AGB models. Typically, changing the shape of the mixing function or the mass extent of the region affected by the mixing produce the same results. Variations in the relative abundance distribution of the three s-process peaks (Sr, Ba, and Pb) are generally within +/-0.2 dex, similar to the observational error bars. We conclude that other stellar uncertainties - the effect of rotation and of overshoot into the C-O core - play a more important role than the details of the mixing function. The exception is at low metallicity, where the Pb abundance is significantly affected. In relation to the composition observed in stardust SiC grains from AGB stars, the models are relatively close to the data only when assuming the most extreme variation in the mixing profile.Comment: 17 pages, 8 figures, 6 tables, accepted for publications on Monthly Notices of the Royal Astronomical Societ

    On the nature of the most obscured C-rich AGB stars in the Magellanic Clouds

    Get PDF
    The stars in the Magellanic Clouds with the largest degree of obscuration are used to probe the highly uncertain physics of stars in the asymptotic giant branch (AGB) phase of evolution. Carbon stars in particular, provide key information on the amount of third dredge-up (TDU) and mass loss. We use two independent stellar evolution codes to test how a different treatment of the physics affects the evolution on the AGB. The output from the two codes are used to determine the rates of dust formation in the circumstellar envelope, where the method used to determine the dust is the same for each case. The stars with the largest degree of obscuration in the LMC and SMC are identified as the progeny of objects of initial mass 2.53 M2.5-3~M_{\odot} and 1.5 M\sim 1.5~M_{\odot}, respectively. This difference in mass is motivated by the difference in the star formation histories of the two galaxies, and offers a simple explanation of the redder infrared colours of C-stars in the LMC compared to their counterparts in the SMC. The comparison with the Spitzer colours of C-rich AGB stars in the SMC shows that a minimum surface carbon mass fraction X(C)5×103X(C) \sim 5\times 10^{-3} must have been reached by stars of initial mass around 1.5 M1.5~M_{\odot}. Our results confirm the necessity of adopting low-temperature opacities in stellar evolutionary models of AGB stars. These opacities allow the stars to obtain mass-loss rates high enough (104M/yr\gtrsim 10^{-4}M_{\odot}/yr) to produce the amount of dust needed to reproduce the Spitzer coloursComment: 14 pages, 5 figures, 1 table; accepted for publication in MNRAS Main Journa

    An investigation of artificial neural network structure and its effects on the estimation of the low-cycle fatigue parameters of various steels

    Get PDF
    Artificial neural networks (ANNs) are a widely used machine learning approach for estimating low-cycle fatigue parameters. ANN structure has its parameters such as hidden layers, hidden neurons, activation functions, training functions, and so forth, and these parameters have a significant influence over the results. Three hidden layer combinations, the hidden neurons ranging from 1 to 25, and different activation functions like hyperbolic tangent sigmoid (tansig), logistic sigmoid (logsig), and linear (purelin) were used, and their effects on the low-cycle fatigue parameter estimation were investigated to determine optimal ANN structure. Based on the results, suggestions regarding ANN structure for the estimation of the low-cycle fatigue parameters and transition fatigue life were presented. For the output layer and hidden layers, the most suitable activation function was tansig. The optimal hidden neuron range has been found between 4 and 9. The neural network structure with one hidden layer was determined to be most suitable in terms of less knowledge, structural complexity, and computational time and power

    An ALMA view of CS and SiS around oxygen-rich AGB stars

    Full text link
    We aim to determine the distributions of molecular SiS and CS in the circumstellar envelopes of oxygen-rich asymptotic giant branch stars and how these distributions differ between stars that lose mass at different rates. In this study we analyse ALMA observations of SiS and CS emission lines for three oxygen-rich galactic AGB stars: IK Tau, with a moderately high mass-loss rate of 5×1065\times10^{-6}M_\odot yr1^{-1}, and W Hya and R Dor with low mass loss rates of 1×107\sim1\times10^{-7}M_\odot yr1^{-1}. These molecules are usually more abundant in carbon stars but the high sensitivity of ALMA allows us to detect their faint emission in the low mass-loss rate AGB stars. The high spatial resolution of ALMA also allows us to precisely determine the spatial distribution of these molecules in the circumstellar envelopes. We run radiative transfer models to calculate the molecular abundances and abundance distributions for each star. We find a spread of peak SiS abundances with 108\sim10^{-8} for R Dor, 107\sim10^{-7} for W Hya, and 3×106\sim3\times10^{-6} for IK Tau relative to H2_2. We find lower peak CS abundances of 7×109\sim7\times10^{-9} for R Dor, 7×108\sim7\times10^{-8} for W Hya and 4×107\sim4\times10^{-7} for IK Tau, with some stratifications in the abundance distributions. For IK Tau we also calculate abundances for the detected isotopologues: C34^{34}S, 29^{29}SiS, 30^{30}SiS, Si33^{33}S, Si34^{34}S, 29^{29}Si34^{34}S, and 30^{30}Si34^{34}S. Overall the isotopic ratios we derive for IK Tau suggest a lower metallicity than solar.Comment: 16 page

    The Large Magellanic Cloud as a laboratory for Hot Bottom Burning in massive Asymptotic Giant Branch stars

    Get PDF
    We use Spitzer observations of the rich population of Asymptotic Giant Branch stars in the Large Magellanic Cloud (LMC) to test models describing the internal structure and nucleosynthesis of the most massive of these stars, i.e. those with initial mass above 4M\sim 4M_{\odot}. To this aim, we compare Spitzer observations of LMC stars with the theoretical tracks of Asymptotic Giant Branch models, calculated with two of the most popular evolution codes, that are known to differ in particular for the treatment of convection. Although the physical evolution of the two models are significantly different, the properties of dust formed in their winds are surprisingly similar, as is their position in the colour-colour (CCD) and colour-magnitude (CMD) diagrams obtained with the Spitzer bands. This model independent result allows us to select a well defined region in the ([3.6][4.5],[5.8][8.0][3.6]-[4.5], [5.8]-[8.0]) plane, populated by AGB stars experiencing Hot Bottom Burning, the progeny of stars with mass M5.5MM\sim 5.5M_{\odot}. This result opens up an important test of the strength hot bottom burning using detailed near-IR (H and K bands) spectroscopic analysis of the oxygen-rich, high luminosity candidates found in the well defined region of the colour-colour plane. This test is possible because the two stellar evolution codes we use predict very different results for the surface chemistry, and the C/O ratio in particular, owing to their treatment of convection in the envelope and of convective boundaries during third dredge-up. The differences in surface chemistry are most apparent when the model stars reach the phase with the largest infrared emission.Comment: 11 pages, 14 figures, accepted for publication in MNRA
    corecore