222 research outputs found

    Prediction of the ageing of rubber using the chemiluminescence approach and isoconversional kinetics

    Get PDF
    A common scepticism towards the application of many product formulations results from the fact that their long-term stability is difficult to predict. In the present study we report on a new approach of kinetic analysis of the oxidation reactions of natural rubbers with and without stabiliser in an oxygen atmosphere at moderate temperatures using CL measurements carried out on a newly-developed instrumentation. The kinetic parameters of the oxidation process, calculated from the chemiluminescence's signals by means of the differential isoconversional method of Friedman, were subsequently applied for the simulation of the rubber aging under different temperature profiles. The presented results are the first stage of research by using the chemiluminescence method to measure the oxidative aging of rubber and predicting the life time of rubber item

    Decomposition in HTPB bonded HMX followed by heat generation rate and chemiluminescence

    Get PDF
    The decomposition in HTPB bonded HMX was characterized with two highly sensitive methods: heat flow microcalorimetry (HFMC) and Chemiluminescence (CL). The material is stabilized with a phenolic antioxidant. The heat generation (HFMC) rate was determined from 120 to 150°C using a TAM™ microcalorimeter and the oxidation of the substance was followed by the CL emission between 100 and 140°C directly from the solid state sample. The end of antioxidant activity results in both measurements sets in characteristic changes in the curves. Kinetic parameters were calculated applying Arrhenius parameterization for the times to the end of antioxidant activity and by applying modelling with an autocatalytic model extended by a side reaction, which is assigned to the antioxidant consumption. The evaluation with the characteristic times gives good agreement between the two methods; the modelling represents the different but supplementing probing of the two measurement method

    An arbitrary high-order Discontinuous Galerkin method for elastic waves on unstructured meshes - V. Local time stepping and p-adaptivity

    Get PDF
    SUMMARY This article describes the extension of the arbitrary high-order Discontinuous Galerkin (ADER-DG) method to treat locally varying polynomial degress of the basis functions, so-called p-adaptivity, as well as locally varying time steps that may be different from one element to another. The p-adaptive version of the scheme is useful in complex 3-D models with small-scale features which have to be meshed with reasonably small elements to capture the necessary geometrical details of interest. Using a constant high polynomial degree of the basis functions in the whole computational domain can lead to an unreasonably high CPU effort since good spatial resolution at the surface may be already obtained by the fine mesh. Therefore, it can be more adequate in some cases to use a lower order method in the small elements to reduce the CPU effort without loosing much accuracy. To further increase computational efficiency, we present a new local time stepping (LTS) algorithm. For usual explicit time stepping schemes the element with the smallest time step resulting from the stability criterion of the method will dictate its time step to all the other elements of the computational domain. In contrast, by using local time stepping, each element can use its optimal time step given by the local stability condition. Our proposed LTS algorithm for ADER-DG is very general and does not need any temporal synchronization between the elements. Due to the ADER approach, accurate time interpolation is automatically provided at the element interfaces such that the computational overhead is very small and such that the method maintains the uniform high order of accuracy in space and time as in the usual ADER-DG schemes with a globally constant time step. However, the LTS ADER-DG method is computationally much more efficient for problems with strongly varying element size or material parameters since it allows to reduce the total number of element updates considerably. This holds especially for unstructured tetrahedral meshes that contain strongly degenerate elements, so-called slivers. We show numerical convergence results and CPU times for LTS ADER-DG schemes up to sixth order in space and time on irregular tetrahedral meshes containing elements of very different size and also on tetrahedral meshes containing slivers. Further validation of the algorithm is provided by results obtained for the layer over half-space (LOH.1) benchmark problem proposed by the Pacific Earthquake Engineering Research Center. Finally, we present a realistic application on earthquake modelling and ground motion prediction for the alpine valley of Grenoble

    p166 links membrane and intramitochondrial modules of the trypanosomal tripartite attachment complex.

    Get PDF
    The protist parasite Trypanosoma brucei has a single mitochondrion with a single unit genome termed kinetoplast DNA (kDNA). Faithfull segregation of replicated kDNA is ensured by a complicated structure termed tripartite attachment complex (TAC). The TAC physically links the basal body of the flagellum with the kDNA spanning the two mitochondrial membranes. Here, we characterized p166 as the only known TAC subunit that is anchored in the inner membrane. Its C-terminal transmembrane domain separates the protein into a large N-terminal region that interacts with the kDNA-localized TAC102 and a 34 aa C-tail that binds to the intermembrane space-exposed loop of the integral outer membrane protein TAC60. Whereas the outer membrane region requires four essential subunits for proper TAC function, the inner membrane integral p166, via its interaction with TAC60 and TAC102, would theoretically suffice to bridge the distance between the OM and the kDNA. Surprisingly, non-functional p166 lacking the C-terminal 34 aa still localizes to the TAC region. This suggests the existence of additional TAC-associated proteins which loosely bind to non-functional p166 lacking the C-terminal 34 aa and keep it at the TAC. However, binding of full length p166 to these TAC-associated proteins alone would not be sufficient to withstand the mechanical load imposed by the segregating basal bodies

    Sero-Epidemiology as a Tool to Screen Populations for Exposure to Mycobacterium ulcerans

    Get PDF
    Sero-epidemiological analyses revealed that a higher proportion of sera from individuals living in the Buruli ulcer (BU) endemic Densu River Valley of Ghana contain Mycobacterium ulcerans 18 kDa small heat shock protein (shsp)-specific IgG than sera from inhabitants of the Volta Region, which was regarded so far as BU non-endemic. However, follow-up studies in the Volta Region showed that the individual with the highest anti-18 kDa shsp-specific serum IgG titer of all participants from the Volta Region had a BU lesion. Identification of more BU patients in the Volta Region by subsequent active case search demonstrated that sero-epidemiology can help identify low endemicity areas. Endemic and non-endemic communities along the Densu River Valley differed neither in sero-prevalence nor in positivity of environmental samples in PCR targeting M. ulcerans genomic and plasmid DNA sequences. A lower risk of developing M. ulcerans disease in the non-endemic communities may either be related to host factors or a lower virulence of local M. ulcerans strains

    Photoproduction of eta mesons from the neutron: cross sections and double polarization observable E

    Full text link
    Photoproduction of η\eta mesons from neutrons} \abstract{Results from measurements of the photoproduction of η\eta mesons from quasifree protons and neutrons are summarized. The experiments were performed with the CBELSA/TAPS detector at the electron accelerator ELSA in Bonn using the η3π06γ\eta\to3\pi^{0}\to6\gamma decay. A liquid deuterium target was used for the measurement of total cross sections and angular distributions. The results confirm earlier measurements from Bonn and the MAMI facility in Mainz about the existence of a narrow structure in the excitation function of γnnη\gamma n\rightarrow n\eta. The current angular distributions show a forward-backward asymmetry, which was previously not seen, but was predicted by model calculations including an additional narrow P11P_{11} state. Furthermore, data obtained with a longitudinally polarized, deuterated butanol target and a circularly polarized photon beam were analyzed to determine the double polarization observable EE. Both data sets together were also used to extract the helicity dependent cross sections σ1/2\sigma_{1/2} and σ3/2\sigma_{3/2}. The narrow structure in the excitation function of γnnη\gamma n\rightarrow n\eta appears associated with the helicity-1/2 component of the reaction

    The polarization observables T, P, and H and their impact on γppπ0\gamma p \to p\pi^0 multipoles

    Full text link
    Data on the polarization observables T, P, and H for the reaction γppπ0\gamma p\to p\pi^0 are reported. Compared to earlier data from other experiments, our data are more precise and extend the covered range in energy and angle substantially. The results were extracted from azimuthal asymmetries measured using a transversely polarized target and linearly polarized photons. The data were taken at the Bonn electron stretcher accelerator ELSA with the CBELSA/TAPS detector. Within the Bonn-Gatchina partial wave analysis, the new polarization data lead to a significant narrowing of the error band for the multipoles for neutral-pion photoproduction

    The N(1520) 3/2- helicity amplitudes from an energy-independent multipole analysis based on new polarization data on photoproduction of neutral pions

    Full text link
    New data on the polarization observables T, P, and H for the reaction γppπ0\gamma p \to p\pi^0 are reported. The results are extracted from azimuthal asymmetries when a transversely polarized butanol target and a linearly polarized photon beam are used. The data were taken at the Bonn electron stretcher accelerator ELSA using the CBELSA/TAPS detector. These and earlier data are used to perform a truncated energy-independent partial wave analysis in sliced-energy bins. This energy-independent analysis is compared to the results from energy-dependent partial wave analyses
    corecore