30 research outputs found

    EFFECT OF AGE, AND SPLEEN AND TREATMENT STATUS ON MALE REPRODUCTIVE HORMONES AND SOME PHYSIOLOGICAL PARAMETER LEVELS IN PATIENTS WITH BETA-THALASSEMIA MAJOR

    Get PDF
    Objective: This research was conducted to study the relationship between spleen status and chelation treatment status with the male reproductive hormones and some physiological parameter levels. Methods: A total of 35 males with thalassemia major (TM) patients are recruited. Patients are grouped according to (1) their age into two groups; ˂18 years and ≥18 years, (2) their spleen status into two groups; splenectomize and non-splenectomize, and (3) their chelation treatment status into two groups; regulation and irregulation. Body mass index (BMI) was calculated and blood was collected from all patients just before blood transfusion session. Hb, ABO blood groups, ferritin, and hormone (luteinizing hormone [LH], follicle-stimulating hormone [FSH], testosterone, prolactin, and cortisone) levels were determined. Results: The highest frequency of thalassemia was in Group O and the lowest was in AB. BMI was higher in TM patients aged ≥18 years, TM patients with splenectomize, and TM patient who take the treatment irregularly. TM patients aged ≥18 years have high level of LH, FSH, and testosterone. TM patients without splenectomize have higher FSH, prolactin, and testosterone. TM patients take the treatment regularly have significantly higher testosterone levels and non-significantly lower FSH level. Conclusion: The levels of cortisol and prolactin hormones are not disturbed in TM patients and not associated with the rate of transfusion, but the level of Hb and ferritin leads to underweight in BMI and may lead to endocrine dysfunction, especially sexual hormones (FSH, LH, and testosterone). These BMI and sex hormones are related to age, spleen, and treatment status

    Net-phase flow NMR for compact applications

    Get PDF
    The net phase of the NMR signal is proposed as a robust mechanism for the encoding of fluid flow velocity into phase, showing local bijectivity. While magnitude-based or imaging-based methods suffer from loss of signal, by increasing the flow rate, the present method enables us to maintain the high SNR even for the case of fast flow. In addition, it is shown that a well-engineered flow channel is also necessary, which is not the case for traditional cylindrical flow channels. In this contribution, we report on implementing this approach in a low-cost NMR-based flowmeter for use in a low field (1 T) setting, for example, for monitoring reaction flow industrial processes

    Fine-Scale Phylogeographic Structure of Borrelia lusitaniae Revealed by Multilocus Sequence Typing

    Get PDF
    Borrelia lusitaniae is an Old World species of the Lyme borreliosis (LB) group of tick-borne spirochetes and prevails mainly in countries around the Mediterranean Basin. Lizards of the family Lacertidae have been identified as reservoir hosts of B. lusitaniae. These reptiles are highly structured geographically, indicating limited migration. In order to examine whether host geographic structure shapes the evolution and epidemiology of B. lusitaniae, we analyzed the phylogeographic population structure of this tick-borne bacterium using a recently developed multilocus sequence typing (MLST) scheme based on chromosomal housekeeping genes. A total of 2,099 questing nymphal and adult Ixodes ricinus ticks were collected in two climatically different regions of Portugal, being ∼130 km apart. All ticks were screened for spirochetes by direct PCR. Attempts to isolate strains yielded 16 cultures of B. lusitaniae in total. Uncontaminated cultures as well as infected ticks were included in this study. The results using MLST show that the regional B. lusitaniae populations constitute genetically distinct populations. In contrast, no clear phylogeographic signals were detected in sequences of the commonly used molecular markers ospA and ospC. The pronounced population structure of B. lusitaniae over a short geographic distance as captured by MLST of the housekeeping genes suggests that the migration rates of B. lusitaniae are rather low, most likely because the distribution of mediterranean lizard populations is highly parapatric. The study underlines the importance of vertebrate hosts in the geographic spread of tick-borne microparasites

    Surveillance of Ixodes ricinus ticks (Acari: Ixodidae) in Iceland

    Get PDF
    Background: Ixodes ricinus is a three-host tick, a principal vector of Borrelia burgdorferi (s.l.) and one of the main vectors of tick-borne encephalitis (TBE) virus. Iceland is located in the North Atlantic Ocean with subpolar oceanic climate. During the past 3–4 decades, average temperature has increased, supporting more favourable conditions for ticks. Reports of I. ricinus have increased in recent years. If these ticks were able to establish in a changing climate, Iceland may face new threats posed by tick-borne diseases. Methods: Active field surveillance by tick flagging was conducted at 111 sites around Iceland from August 2015 to September 2016. Longworth mammal traps were used to trap Apodemus sylvaticus in southwestern and southern Iceland. Surveillance on tick importation by migratory birds was conducted in southeastern Iceland, using bird nets and a Heligoland trap. Vulpes lagopus carcasses from all regions of the country were inspected for ticks. In addition, existing and new passive surveillance data from two institutes have been merged and are presented. Continental probability of presence models were produced. Boosted Regression Trees spatial modelling methods and its predictions were assessed against reported presence. Results: By field sampling 26 questing I. ricinus ticks (7 males, 3 females and 16 nymphs) were collected from vegetation from three locations in southern and southeastern Iceland. Four ticks were found on migratory birds at their arrival in May 2016. A total of 52 A. sylvaticus were live-trapped but no ticks were found nor on 315 V. lagopus carcasses. Passive surveillance data collected since 1976, reports further 214 I. ricinus ticks from 202 records, with an increase of submissions in recent years. The continental probability of presence model correctly predicts approximately 75% of the recorded presences, but fails to predict a fairly specific category of recorded presence in areas where the records are probably opportunistic and not likely to lead to establishment. Conclusions: To the best of our knowledge, this study represents the first finding of questing I. ricinus ticks in Iceland. The species could possibly be established locally in Iceland in low abundance, although no questing larvae have yet been detected to confirm established populations. Submitted tick records have increased recently, which may reflect an increase in exposure, or in interest in ticks. Furthermore, the amount of records on dogs, cats and humans indicate that ticks were acquired locally, presenting a local biting risk. Tick findings on migratory birds highlight a possible route of importation. Obtaining questing larvae is now a priority to confirm that I. ricinus populations are established in Iceland. Further surveys on wild mammals (e.g. Rangifer tarandus), livestock and migratory birds are recommended to better understand their role as potential hosts for I. ricinus.Work was carried out under VectorNet, a European network for sharing data on the geographic distribution of arthropod vectors, transmitting human and animal disease agents (framework contract OC/EFSA/AHAW/2013/02-FWC1) funded by the European Food Safety Authority (EFSA) and the European Centre for Disease prevention and Control (ECDC). JM is also partly funded by the National Institute for Health Research Health Protection Research Unit (NIHR HPRU) in Environmental Change and Health at the London School of Hygiene & Tropical Medicine in partnership with Public Health England (PHE), and in collaboration with the University of Exeter, University College London, and the Met Office; and partly funded by the NIHR HPRU on Emerging Infections and Zoonoses at the University of Liverpool in partnership with PHE and Liverpool School of Tropical Medicine.Peer Reviewe
    corecore