10,019 research outputs found

    Reply to "Comment on 'Scalar-tensor gravity coupled to a global monopole and flat rotation curves' "

    Full text link
    In Brans-Dicke theory of gravity we explain how the extra constant value in the formula for rotation velocities of stars in a galactic halo can be obtained due to the global monopole field. We argue on a few points of the preceding Comment and discuss improvement of our model.Comment: 4 pages, RevTeX4 fil

    Lattice QCD with light dynamical quarks

    Get PDF
    We report on the simulation of QCD with light dynamical quarks using the two-step multi-boson (TSMB) algorithm. In an exploratory study with two flavours of quarks at lattice spacing about 0.27 fm and with quark mass down to one sixth of the strange quark mass eigenvalue spectra and autocorrelations have been studied. Here we present results on the volume dependence as well as tests of possible algorithmic improvements.Comment: 6 pages, Lattice2002(spectrum

    Numerical Algorithm for Wing-Structure Design

    Get PDF
    Low-fidelity aerostructural optimization routines have often focused on determining the optimal spanloads for a given wing configuration. Several analytical approaches have been developed that can predict optimal lift distributions on rectangular wings with a specific payload distribution. However, when applied to wings of arbitrary geometry and payload distribution, these approaches fail. Increasing the utility and accuracy of these analytical methods can result in important benefits during later design phases. In this paper, an iterative algorithm is developed that uses numerical integration to predict the distribution of structural weight required to support the bending moments on a wing with arbitrary geometry and payload distribution. It is shown that the algorithm’s predictions for the structural weight of a rectangular test wing match those found using an analytical approach. The structural weight distribution for a spanwise-constant non-structural weight distribution is also found. Coupling the algorithm with an optimization routine, the optimal lift distributions for the rectangular test wing are found and are shown to match analytical results. Finally, the optimal lift distributions for a test wing configuration with a spanwise-constant non-structural weight distribution are found using the algorithm

    Cutoff-effects in the spectrum of dynamical Wilson fermions

    Full text link
    We investigate the low-lying eigenvalues of the improved Wilson-Dirac operator in the Schroedinger functional with two dynamical quark flavors. At a lattice spacing of approximately 0.1 fm we find more very small eigenvalues than in the quenched case. These cause problems with HMC-type algorithms and in the evaluation of fermionic correlation functions. Through a simulation at a finer lattice spacing we are able to establish their nature as cutoff-effectsComment: Lattice2004(machines), 3 pages, 3 figures, talk by R.

    Visual Persuasion: Inferring Communicative Intents of Images

    Full text link
    In this paper we introduce the novel problem of under-standing visual persuasion. Modern mass media make ex-tensive use of images to persuade people to make commer-cial and political decisions. These effects and techniques are widely studied in the social sciences, but behavioral studies do not scale to massive datasets. Computer vision has made great strides in building syntactical representa-tions of images, such as detection and identification of ob-jects. However, the pervasive use of images for commu-nicative purposes has been largely ignored. We extend the significant advances in syntactic analysis in computer vi-sion to the higher-level challenge of understanding the un-derlying communicative intent implied in images. We be-gin by identifying nine dimensions of persuasive intent la-tent in images of politicians, such as “socially dominant,” “energetic, ” and “trustworthy, ” and propose a hierarchical model that builds on the layer of syntactical attributes, such as “smile ” and “waving hand, ” to predict the intents pre-sented in the images. To facilitate progress, we introduce a new dataset of 1,124 images of politicians labeled with ground-truth intents in the form of rankings. This study demonstrates that a systematic focus on visual persuasion opens up the field of computer vision to a new class of inves-tigations around mediated images, intersecting with media analysis, psychology, and political communication. 1

    Type three secretion system-mediated escape of Burkholderia pseudomallei into the host cytosol is critical for the activation of NFÎşB.

    Get PDF
    BackgroundBurkholderia pseudomallei is the causative agent of melioidosis, a potentially fatal disease endemic in Southeast Asia and Northern Australia. This Gram-negative pathogen possesses numerous virulence factors including three "injection type" type three secretion systems (T3SSs). B. pseudomallei has been shown to activate NFÎşB in HEK293T cells in a Toll-like receptor and MyD88 independent manner that requires T3SS gene cluster 3 (T3SS3 or T3SSBsa). However, the mechanism of how T3SS3 contributes to NFÎşB activation is unknown.ResultsKnown T3SS3 effectors are not responsible for NFÎşB activation. Furthermore, T3SS3-null mutants are able to activate NFÎşB almost to the same extent as wildtype bacteria at late time points of infection, corresponding to delayed escape into the cytosol. NFÎşB activation also occurs when bacteria are delivered directly into the cytosol by photothermal nanoblade injection.ConclusionsT3SS3 does not directly activate NFÎşB but facilitates bacterial escape into the cytosol where the host is able to sense the presence of the pathogen through cytosolic sensors leading to NFÎşB activation

    Attainable Moment Set and Actuation Time of a Bio-Inspired Rotating Empennage

    Get PDF
    Future tactical aircraft will likely demonstrate improvements in efficiency, weight, and control by implementing bio-inspired control systems. This work analyzes a novel control system for a fighter aircraft inspired by the function of – and the degrees of freedom available in – a bird’s tail. The control system is introduced to an existing fighter aircraft design by removing the vertical tail and allowing the horizontal tail surfaces to rotate about the roll axis. Using a low-fidelity aerodynamic model, an analysis on the available controlling moments and actuation speeds of the baseline aircraft is compared to that of the bio-inspired rotating empennage design. The results of this analysis at a takeoff and approach flight condition indicate that the bio-inspired tail design is able to improve upon the baseline in terms of control power available for yaw by up to 170%, while also improving the actuation speed by about 450 milliseconds for moments about the pitch axis. The bio-inspired design is shown to have actuation times that are up to 600 milliseconds slower for generating yawing moments and a reduced roll control contribution from the tail in certain moment combinations. The impacts of these issues on control will need to be determined with analysis at additional flight conditions and a flight dynamics analysis

    Spectral-domain optical coherence reflectometric sensor for highly sensitive molecular detection

    Get PDF
    We describe what we believe to be a novel use of spectral-domain optical coherence reflectometry (SD-OCR) for highly sensitive molecular detection in real time. The SD-OCR sensor allows identification of a sensor surface of interest in an OCR depth scan and monitoring the phase alteration due to molecular interaction at that surface with subnanometer optical thickness sensitivity. We present subfemtomole detection sensitivity for etching of Si
    • …
    corecore