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Numerical Algorithm for Wing-Structure Design

J. D. Taylor,* D. F. Hunsaker,"
Utah State University, Logan, Utah, 84322-4130

and

J. J. Joot
U.S. Air Force Research Laboratory, Wright-Patterson Air Force Base, OH, 45433-7402

Low-fidelity aerostructural optimization routines have often focused on determining the
optimal spanloads for a given wing configuration. Several analytical approaches have been
developed that can predict optimal lift distributions on rectangular wings with a specific
payload distribution. However, when applied to wings of arbitrary geometry and payload
distribution, these approaches fail. Increasing the utility and accuracy of these analytical
methods can result in important benefits during later design phases. In this paper, an
iterative algorithm is developed that uses numerical integration to predict the distribution
of structural weight required to support the bending moments on a wing with arbitrary
geometry and payload distribution. It is shown that the algorithm’s predictions for the
structural weight of a rectangular test wing match those found using an analytical ap-
proach. The structural weight distribution for a spanwise-constant non-structural weight
distribution is also found. Coupling the algorithm with an optimization routine, the op-
timal lift distributions for the rectangular test wing are found and are shown to match
analytical results. Finally, the optimal lift distributions for a test wing configuration with
a spanwise-constant non-structural weight distribution are found using the algorithm.

Nomenclature
A = beam cross-sectional area
A = Fourier coefficients in the lifting-line solution for the section-lift distribution, Eq. (1)
B, = Fourier coefficients in the lifting-line solution for the dimensionless section-lift distribution, Eq. (3)
b = wingspan
C, = shape coefficient for stress-limited design, Eq. (25)
c = local wing section chord length
D; = wing induced drag
frn, = maneuvering-flight bending moment function for Runge-Kutta integration, Eq. (43)
fng = hard-landing bending moment function for Runge-Kutta integration, Eq. (44)
h = height of the beam cross-section
hy = flange height (i.e., vertical thickness) of the I-beam cross-section
h; = inside height of the box beam cross-section
I = beam section moment of inertia
L = total wing lift
L = local wing section lift
m = number of nodes for discretized wing
Mb = local wing section bending moment

*Graduate Student, Mechanical and Aerospace Engineering, 4130 Old Main Hill, ATAA Student Member.
T Assistant Professor, Mechanical and Aerospace Engineering, 4130 Old Main Hill, ATIAA Senior Member.
fSenior Research Mechanical Engineer, AFRL/RQVS, 2790 D St., ATAA Senior Member.
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Ng = load factor in g’s
Ng = limiting load factor at the hard-landing design limit

N = limiting load factor at the maneuvering-flight design limit
S = wing planform area
Sp = proportionality coefficient between the weight of the wing structure per unit span and the wing section

bending moment, Eq. (24)
tmax = maximum airfoil section thickness
Voo = freestream airspeed
w = gross weight
Wi, = total weight of the non-structural components
W, = weight of the non-structural components carried at the wing root
Wy = total weight of the wing structure
Wn = weight of non-structural components per unit span carried within the wing
W
w

= weight of the wing structure per unit span
= width of the beam cross-section

w; = inside width of the box beam cross-section

Way = web width (i.e., horizontal thickness) of the I-beam cross-section
z = gpanwise coordinate relative to the midspan

~ = specific weight of the beam material

0 = change of variables for the spanwise coordinate, Eq. (1)
Ky = weight distribution coefficient, Eq. (30)

P = air density

Omax = maximum longitudinal stress

Subscripts

j = value at section j

k = value at section k

0 = value at section 0

m = value at section m

I. Introduction

IRCRAFT design requires a multidisciplinary approach that encompasses several aerospace disciplines, in-
A cluding aerodynamics, structures, propulsion systems, and controls. The successful integration of these
disciplines has been a topic of interest in recent years, leading to the growth of the field of multidisciplinary
design optimization (MDO).! Because of its highly-coupled nature, particular emphasis has been placed on
the integration of aerodynamics and structures to produce optimal wing designs. This process has been
termed aerostructural optimization.

Aerostructural optimization can be thought of in three levels of fidelity: conceptual design, preliminary
design, and detail design. Recent years have seen an increased interest in optimization at the detail design
level. At this level, high-fidelity CFD and FEA tools are often used to model the aerodynamics and the
wing structure to capture the effects of subtle variations in complex geometries and configurations. Because
of the high computational costs of CFD and FEA, significant effort has been made to develop methods
that decrease computation time without sacrificing fidelity.2"® High-fidelity methods are generally used for
detail-level design of all aircraft,® but are sometimes used at the conceptual and preliminary design levels for
unconventional geometries and structures, such as morphing trailing edge wings”® and tow-steered wings.% 1°

Although high-fidelity methods have seen significant reductions in computational time, they still carry
heavy computational requirements. In the preliminary design phase, the high levels of fidelity required for
detail-level design are not always necessary, and reasonable accuracy can often be attained by less complex
models. In order to reduce computational requirements, a high fidelity aerodynamic or structural model may
be replaced by a simpler numerical or analytical model in an aerostructural optimization routine, resulting
in a multi-fidelity model.
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Haftka!! was one of the first to explore multi-fidelity aerostructural optimization. Using FEA for his
structural analysis, he evaluated the aerodynamics using a Fourier series definition for lift and drag. James'?
and Jansen'® coupled FEA with an aerodynamic panel code to optimize the Common Research Model (CRM)
wing.'* Both Dunning et al.'®'6 and Stanford et al.!™!® also examined the CRM wing, performing wing
box topology optimization under various structural and aeroelastic tailoring constraints. Using FEA for
structural analysis, they favored a doublet-lattice algorithm to predict aerodynamics. Still others have used
numerical lifting-line methods,'® 2% vortex-lattice methods,?"'2? and experimental data?® to replace CFD
aerodynamic solvers. In place of FEA structural models, beam models'®-?? and weight equations derived
statistically,?* using response-surface methodology,?® or other methods?! have been used. Multi-fidelity
aerostructural optimization routines have been successfully used for a wide variety of aircraft configurations,
including subsonic configurations,'® '® supersonic transports,?5-2® and rotorcraft.2%:30

Low-fidelity optimization routines are generally used for conceptual-level design. These routines generally
involve using low-fidelity aerodynamic and structural models to determine the optimal spanwise load distri-
bution on a wing. Prandtl®! seems to be the first to note that the elliptic lift distribution does not necessarily
minimize induced drag when structural considerations are taken into account. He found a bell-shaped lift
distribution that minimized induced drag for a fixed gross weight and moment of inertia of gross weight.
Several others have built upon Prandtl’s work. For example, Jones3? extended Prandtl’s work to determine
optimal lift distributions for a given root bending moment. Gopalarathnam and Norris®® varied camber
to find an optimal lift distribution with constraints on root bending moment. Klein and Viswanathan34:3°
found the optimal lift distribution at a given lift coefficient with constraints on both root and integrated
bending moment. McGeer®® considered aeroelastic effects. Hunsaker et al.3” took into account total aircraft
weight, including a distribution of non-structural weight in the wing to find optimal lift distributions for
stress-limited rectangular wing designs with constraints on integrated bending moment.

In determining optimal spanloads, minimum drag is generally achieved by shifting the loads inboard to
alleviate the moments near the wingtips, allowing for an increase in wingspan. It is important to note,
however, that drag reductions are generally only achieved by a non-elliptic lift distribution if wingspan is
allowed to vary. As pointed out by Iglesias and Mason,?® Takahashi,?” and Pate and German,*’ the optimal
spanload distributions that minimize weight or that minimize induced drag during a high-load maneuver are
not necessarily optimal for cruise. If such lift distributions are utilized on a fixed-geometry wing, they will
result in an overall increase in induced drag over a typical flight profile.

Although low-fidelity methods are generally only used in the conceptual design phase, they are instru-
mental in increasing fundamental understanding of the coupling between aerodynamics and wing structure.
In addition, a good first-cut design can save significant time and cost at later design phases. For these rea-
somns, it is advantageous to increase the accuracy and applicability of low-fidelity aerodynamic optimization
routines and extend their utility to later design phases. This paper extends the utility of the analytical
approach taken by Hunsaker et al.?” to straight wings with arbitrary geometries and payload distributions
by developing an iterative algorithm that uses numerical integration techniques to solve for the structural
weight distribution required to support the wing bending moments. The wing-structure algorithm is cou-
pled with an optimization algorithm to determine the lift distribution that minimizes induced drag for each
configuration. Structural weight predictions and optimal lift distributions are shown for an example wing
with two payload distributions.

II. Analytical Formulation

The Fourier series solution to Prandtl’s lifting-line theory*!:42

section-circulation distribution on a lifting surface. Using this circulation in the Kutta-Joukowski Law
gives a spanwise section-lift distribution

can be used to describe the spanwise
43,44

L(9) = 2bpV2, i A, sin(nd); 0 = cos™ ' (—22/b) (1)

n=1

The total lift can be described using the definitions of wing lift, aspect ratio and the classical lifting-line
solution for total lift
L= %7‘(‘()2pV020A1 (2)
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Using Egs. (1) and (2), the spanwise-lift distribution can be expressed in dimensionless form

An L= —bcos(0) 3)

_ A -
—= = — |si B, si : B,=—
sin(6) + E nsin(nd) | ; A 5

n=2
The induced drag corresponding to the total lift in Eq. (2) can be described using the definitions of total
drag, aspect ratio, and the classical lifting-line solution for induced drag

2L/ N AR
i WpVOQO = nA2 (4)

Using the definition of B, from Eq. (3) and considering the case of steady-level flight, the induced drag from

Eq. (4) can be rewritten
2 (W/b)* >
D, = 1 nB;,
’ va2 + Z (5)

As seen in Eq. (5), at any given operating condition, the induced drag is a function of aircraft weight,
wingspan, and the Fourier coefficients, B,,. For any fixed weight and wingspan, Eq. (5) is minimized by
setting B,, = 0 for all n > 1. Using these values in Eq. (3) gives the well-known elliptic lift distribution.

bL(O) 4 —bcos(f
BLO) _ 4 ), n= 20eos®)
L T 2

(6)

For configurations with fixed total weight and wingspan, the elliptic lift distribution will always give a
minimum in induced drag. However, if total weight and wingspan are allowed to vary, the elliptic lift
distribution does not necessarily minimize induced drag.

From Eq. (5), we see that induced drag can be reduced by increasing wingspan and decreasing weight.
Neglecting structural considerations, an elliptic lift distribution on a wing with the largest possible wingspan
gives the greatest efficiency. However, the maximum wingspan is limited when structural requirements
are taken into account. As wingspan increases, the wing bending moments increase, and the weight of
the structure required to support the bending moments must also increase. At some critical wingspan,
the additional drag induced by increasing the wing weight will exceed the the drag reductions attained
by increasing wingspan. The wingspan at which these two effects balance is the wingspan that minimizes
induced drag for a given lift distribution.

Lift distributions that shift the spanwise-lift distribution inboard alleviate the bending moments near the
wingtips. This allows for a larger optimal wingspan than that allowed by the elliptic lift distribution for the
same gross lift and gross weight. However, such lift distributions are achieved using non-zero values of B,,.
As seen in Eq. (5), any non-zero value of B,, increases induced drag. The tradeoff between the drag induced
by a non-elliptic lift distribution and the reduction in induced drag achieved by a larger optimal wingspan
results in some non-elliptic lift distribution and optimal wingspan that minimize induced drag for a given
weight. Prandtl’s work in 19333! exploited this tradeoff for a rectangular wing with constrained total lift and
moment of inertia of total lift to find a bell-shaped lift distribution that allowed a wingspan increase of 22.5
percent and a drag decrease of 11.1 percent. Hunsaker et al.?” found a lift distribution for the stress-limited
design of a rectangular wing that allowed a wingspan increase of 4.98 percent and drag reduction of 4.25
percent. An brief overview of these analytical approaches is given in the following sections.

A. Prandtl’s Formulation

Prandt] developed the analytical relations that led to his optimal lift distribution by assuming that the
section bending moment on a wing is a function of only the lift distribution, as shown in Fig. 1. Using this
assumption, the section bending moment can be written

My(z) = / L(z") (2 — 2)d2, forz>0 (7)
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A
L(Z)

Wing Centerline

Fig. 1 Schematic of forces at spanwise location z = 2z’ contributing to the bending moment
at the spanwise location z as assumed by Prandtl.3!

In order to determine the weight of the wing structure required to support these bending moments, Prandt]?!
assumed that the section bending moments are related to the section structural weight by a spanwise-invariant
proportionality constant

iy Mb z

() = 20t2) ()

b

The total structural weight can be determined by integrating the section structural weight across the full
span

b2
W, = / Wi (2)dz 9)
z=—b/2

Using Eqgs. (7) and (8) in Eq. (9) for steady level flight with any spanwise-symmetric lift distribution, and
enforcing the assumption that the proportionality constant is spanwise invariant gives

b2 b2
W, = % / / bLEZ )(z’ —2)dz'dz (10)
z=02'=z

When the elliptic lift distribution is used, Eq. (10) can be integrated to give the structural weight required
to support the bending moments produced by the elliptic lift distribution under Prandtl’s®! assumptions
Wh?
= 11
325y (11)

Prandtl®! minimized induced drag by using a non-elliptic lift distribution. Prandtl’s lift distribution can be
written in dimensionless form as

bL(6)

— = % [sin(@) — %sin(39)} ; z

—bcos(0)
2

(12)

Notice that Eq. (12) is in the same form as Eq. (3) where B; =0, B3 = —1/3, and B,, = 0 for n > 3. Using
Prandt!’s minimum drag lift distribution in Eq. (10) and integrating gives the structural weight required to
support the bending moments produced by Prandtl’s lift distribution under his assumptions

Wb?
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Equations (11) and (13) can be solved to find the wingspan for any given structural weight. Solving for
wingspan shows that the wingspan allowed by Prandtl’s lift distribution is 22.5 percent larger than that
allowed by the elliptic lift distribution. Using the wingspan found from Eq. (11) in Eq. (5) gives the drag
induced by the elliptic lift distribution with the optimal wingspan

W3

Di=——77—-— 14
167TpV0208bW‘; ( )

The drag induced by Prandtl’s lift distribution is found by using the wingspan found from Eq. (13) in Eq. (5)
3

D—_ "

187pVZ Sy W

From Egs. (14) and (15) we see that the ratio of drag induced by Prandtl’s lift distribution to the drag

induced by the elliptic lift distribution is 8/9, which means that for the same gross weight, Prandtl’s lift
distribution induces 11.1 percent less drag than the elliptic lift distribution.

(15)

B. Hunsaker’s Formulation

In his predictions for bending moment, Prandtl®! did not take into account the effect of weight distributed
across the wing. However, modern aircraft often carry some non-structural weight in addition to the weight
of wing structure. The body forces produced by the weight distributed in the wing can have a large impact
on the optimal lift and structural weight distribution. Hunsaker et al.3” developed predictions for optimal
structural weight and lift distribution under the assumption that the total weight of an aircraft is the sum
of the weight at the wing root, W,., the non-structural weight in the wing, W,,, and the the structural weight
required to support the wing bending moments, Wy, which gives

W =W, + W, + W, (16)

The non-structural weight used in Eq. (16) includes the weight from all non-structural components distributed
in the wing, such as fuel, nacelles, engines, or payload, as shown in Fig. 2. The total non-structural weight
is found by integrating the section non-structural weight, W,,(z), across the span

b/2

W, = Wn(z)dz (17)
z_/b‘/2

Integrating the section structural weight, WS (z), across the span, the total structural weight in the wing can
be written
b/2

W, = / W, (2)dz (18)

z=—b/2

In order to find closed-form analytical solutions, Hunsaker et al.3” limited their work to a specific non-
structural weight distribution that is dependent on the total weight, weight at the wing root, and structural
weight distribution N

M e (19)
In general, however, Eq. (19) is not a good representation of the distribution of non-structural components in
a wing. In fact, a wing’s non-structural weight distribution rarely follows a pattern that permits closed-form
evaluation. Instead, numerical methods are required to evaluate the integrals in Eqs. (17) and (18) if an
arbitrary non-structural weight distribution is considered.

Whereas Prandtl®! assumed that the bending moments produced on a wing are a function of the lift
distribution alone, Hunsaker et al.3” also took into account the bending moments caused by the weight of
the wing structure and all non-structural components. In addition, they added a provision to account for the
possibility of a load factor. Figure 3 shows a schematic of the forces that contribute to the section bending
moment under the assumptions made by Hunsaker et al.3” Considering the lift distribution along with the

Wa(2) = (W —W,)
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o

fuselage

fuel O
—\ J— <~
nacelles — 9 J
/
Wln(z)

landing gear

Fig. 2 Schematic of the distribution of non-structural components for an example aircraft
configuration.

Wing Centerline

ina [Wn(z') + Wn(z’)]

Fig. 3 Schematic of forces at spanwise location z = 2z’ contributing to the bending moment
at the spanwise location z as assumed by Hunsaker et al.3”

structural and non-structural weight distributions at some load factor, the section bending moment becomes
b/2
M,(2) = / [z(z’) —ngW,(2') — na/Wv/n(z')} () —2)dZ’, forz>0 (20)

where the load factor, n,, is measured in g’s.

Equation (20) gives the general form of the section bending moment. In general, the load factor is used
to account for the additional acceleration caused by a maneuver. Defining n,, as the maneuvering design
limit, Eq. (20) can be rewritten

b2 .
My(2) = nm / WL(; ) _ Wo(2) — Ws(z’)] (2 —2)dz';, for >0 (21)

In addition to maneuvers, however, the load factor can be used to account for negative acceleration caused
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by a hard landing or taxi bump. If n, is taken to be the hard-landing design limit, Eq. (20) becomes

b/2 -
— __ N /
My(z) = —ny / [Wn(z’) + W(2') — w L(; ) (2 = 2)dz', forz>0 (22)
Mg

When determining the weight of the wing structure required to support the bending moments, both the
maneuvering and hard-landing design limit must be taken into account. The limit that gives a higher
magnitude bending moment at any given section is the limit that drives the structural weight required at
that section.

Like Prandtl,?! Hunsaker et al.?” assumed that the structural weight is related to the bending moments
by a proportionality constant. However, whereas Prandtl®! assumed that the proportionality constant is
invariant across the wingspan, Hunsaker et al.?” allowed the proportionality constant to vary at each
spanwise location s

Wa(z) = | My (2)]
Sb(2)

Assuming that the bending moments are fully supported by a vertically symmetric beam in pure bending,
Hunsaker et al.3” related the proportionality constant to the section geometry by
Cy [tmax(2)/c(2)] ¢(2)Omax | 21 (h/tmax)

Sb(Z) = v ) CO' = Ah2

(23)

(24)

where tmax(2)/c(2) is the maximum airfoil-thickness-to-chord ratio, ¢(z) is the chord-length distribution,
Omax 18 the maximum permissible stress in the beam, v is the specific weight of the beam material, and C,
is the beam shape factor. The shape factor for the beam cross-sections shown in Fig. 4 are given by

h tm'xx
w Rectangular Beam

6

(1 — wihd /wh?®) (h/tmax)
Co = 6 (1 — w;h;/wh)

Box Beam (25)

(2 /R)* + 6 (g /1) (1= Ry /)2 + (i) (1= 2R /)] ()
6 [2hs /o + (wafw) (1 — 20y /1)

! max Th >

I-beam

B [ | —

—

Al

tmax @%ﬂ_‘h >
pu—
w

Fig. 4 Schematic of three common beam cross sections with shape factors defined in Eq. (25).
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It is important to note that because the beam cross-section must fit within the airfoil thickness, the ratio
h/tmax must be less than unity.

The total structural weight is simply the section structural weight integrated across the span. Using
Eq. (23) in Eq. (18) and rewriting for a spanwise-symmetric load distribution, the total structural weight

for a wing under the assumptions of Hunsaker et al.?” is
7 1o
Mb z
Ws =2 dz 26
J, Sb(2) (26)

where the proportionality constant, Sp(2), is given by Eq. (24). In order to obtain analytical results, Hunsaker
et al.37 assumed a wing with rectangular planform shape, making the chord distribution, ¢(z) = ¢, and section
thickness, tmax(2)/c(2) = tmax/c, constant. However, if some arbitrary non-rectangular planform is used,
¢(z) and tmax(2)/c(z) are no longer spanwise invariant, and Eq. (26) must be evaluated numerically.

Using the non-structural weight distribution given by Eq. (19) in Eq. (21), Hunsaker et al.3” were able
to find analytical results for the structural weight and the optimal lift distribution. When Eq. (19) is used

in Eq. (21), the maneuvering-flight section bending moment becomes
b/2

M, (= —2)d2', for z2>0 (27)

2=z

Similarly, using Eq. (19) in Eq. (22), the hard-landing section bending moment gives

b/2
My(z) = —[(ng — 1) W — ngW,] / L(LZ ) (2 —2)ds, for z>0 (28)

Notice that Eqgs. (27) and (28) are directly proportional to the bending moments found by Prandtl in Eq. (7).
The total structural weight required to support the bending moments on a wing with the non-structural
weight distribution given by Eq. (19) is found by using Egs. (3), (27), and (28) in Eq. (26)

b/2 b/2

8 w. 27
W, l:rvll)/Sb / / {sm {cos (—)] + ZB sin {ncos (—5)} } (' — 2)d7dz (29)
z2=02z'=2
where 1
Noms W, > LW

Nm + Ng

W ng —1

1) 2 g -

(ng = 1) w, o Wr < Nm + Mg

For any spanwise-symmetric lift distribution, the Fourier coefficients, B,,, are zero for all even n. Integrating
Eq. (29) gives B, = 0 for n > 3, and the total structural weight for a rectangular wing with a spanwise-
symmetric lift distribution and the non-structural weight distribution given by Eq. (19) becomes

chwrbz
Ws=—F5—(1+B: 1
5 (1+B9) (31)

Equation (31) can easily be solved to find the wingspan for a given structural weight, proportionality constant,
weight at the wing root, and lift distribution defined by Bs alone

325, W,

b= |——bs
HZWWT. (1 + B3)

(32)
Using Eq. (32) in Eq. (5) gives the corresponding induced drag

oy W, W2 =~ .2
i=————(1+B3)[1 B 33
TompvZoy, T 3)< +nz::2” n (33)
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It can be seen that Eq. (33) is minimized with

By =0; Bs=-1/3, B, =0, forn>3 (34)

These results, as well as those found by Prandtl,?! assume that the optimal wingspan is obtained by extending
wingspan while holding the chord constant. However, Hunsaker et al.>” noted that it is often common for
the wing loading, W/S, to be constrained by airspeed requirements. If wing loading is constrained, it is

convenient to rewrite Eq. (31) in the form

_ ~(W/S) Kk W,.b3
320, (tmax/C)Omax . W

W, (1+ B3) (35)

Solving for the wingspan in Eq. (35) gives

b— 3 32cg(trrlax/c)arrlaxWWs (36)
(1 + Bo) (W/S)an W,
Using Eq. (36) in Eq. (5) gives the induced drag
200438 [ (4 Byy(W/S) s W, 2] (37)
v 7TpV020 3200— (tmax/c)grna.x WS

Equation (37) is minimized with

By=0; Bsy=-3/8+./9/64—1/12, B, =0, forn>3 (38)

which, when used in Eq. (3), gives the minimum drag lift distribution for the stress-limited design of a
rectangular wing with fixed wing loading

L0 2 Lo+ (1- B ) sman)] i == -2 )

Using Eq. (38) in Egs. (35) and (37) gives a wingspan that is 4.98 percent larger than the wingspan allowed
by the elliptic lift distribution and a drag reduction of 4.25 percent over the elliptic lift distribution for wings
of equal weight.

Like Prandtl, Hunsaker et al.?” limited their analysis to a rectangular wing. Furthermore, Hunsaker et
al.’” assumed the non-structural weight distribution from Eq. (19). The use of this non-structural weight
distribution eliminates the circular dependence between the wing’s structural weight distribution and the
bending moments. A generalization of the analysis to non-rectangular wings with alternate non-structural
weight distributions not only requires numerical integration, but it also requires the use of an iterative
algorithm that predicts structural weight by converging the structural weight distribution and bending
moment distribution on a wing with fixed geometry, lift distribution, and non-structural weight distribution.
Such an algorithm is developed in the following section.

III. Numerical Algorithm

The selection of a numerical integration scheme is important when evaluating the integrals from the
previous section. In general, any high-order numerical integration scheme will yield valid results, but in
some cases, second order integration schemes, such as trapezoidal rule, may fail to converge on a finite,
nonzero solution. In the following section, we use fourth-order Runge-Kutta to carry out the integration.
For aerodynamic applications, it is common to evenly distribute nodes in 6 and use cosine clustering to
increase grid density near high-gradient regions, such as the wingtip. However, for simplicity, the following
analysis assumes that the wing is discretized into m evenly-spaced spanwise segments in z, as shown in
Fig. 5. The equations for a wing discretized with cosine clustering are given in the appendix. Note that
when used to evaluate definite intervals at evenly-spaced intervals, fourth order Runge-Kutta is also known
as Simpson’s 1/3 rule.
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2io1 Zi Zi Zm =
— J— +
ZO—O J J

Fig. 5 Wing discretization for single semispan with even spacing in z.

If the wingspan is known and a series of Fourier coefficients, B, is given, Eq. (3) is fully defined. Using
the nomenclature from Fig. 5, the dimensionless lift distribution given by Eq. (3) can be expressed at any

section j as
LY 4 feost (23] 4 5B, sin [neost (22
(L)'—W{sm |:COS ( 7 ﬂ +z:Qanm [ncos ( 5 (40)
J n=

Evaluation of the bending moments in Egs. (21) and (22) requires a known dimensionless lift distribution,
non-structural weight distribution, and structural weight distribution. In general, the non-structural weight
distribution is known beforehand and is treated as an input to the algorithm. However, the structural
weight distribution is a function of the bending moments. Therefore, some initial guess must be made for
the structural weight distribution on the first algorithm iteration. For simplicity, a suitable initial guess
is Wi(z) = 0. Given a non-structural weight distribution and an initial guess for the structural weight
distribution, the total non-structural weight, W,,, can be found by evaluating the integral in Eq. (17) using
fourth-order Runge-Kutta

— m—1 __ m—2 __ —
Who +4 > Wy, +2 > Wy, + Wy,
=1,3,5 §=2,4,6
W =2 (2 — J 41
(om — 20) » (41)
Evaluating Eq. (18) using fourth-order Runge-Kutta, the total structural weight becomes
— m—1 __ m—2 __ —
Weo +4 > Ws, +2 > W, +W,,
i=1,3,5 §=2,4,6
We =2 (2 — ! 42
(2m — #0) 3 (42)

Using Eqs. (41) and (42) in Eq. (16) gives the total aircraft weight. With the total weight known, and the
non-structural and structural weight distributions defined, the maneuvering bending moment at section j
can be found by using fourth-order Runge-Kutta to evaluate the integral in Eq. (21) for a given maneuvering
limit, n,,

m—1 m—1

frm () +4 >0 fun () 2 > fan(2k) + fo (2m)

~ A k=j+1,3,5 k=j+2,4,6
3(m — j)

fnm (Zk) =|W (ﬁ) - Wnk - WSk‘| (Zk - Zj)
L k
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Similarly, the hard-landing bending moment at section j for a given hard-landing limit, ng, is found from
Eq. (22) by evaluating the integral using fourth-order Runge-Kutta

B m—1 m—1
fng(zj) +4 Z fng(zk) +2 Z fng(zk)"_fng(zm)
J/\va = —ny (2 — 2;) k=j+1,3,5 k=j+2,4,6
! ! ! 3(m —j)
I (44)
f’ﬂg (Zk) = Wnk + Wsk - K £ (Zk - Zj)
I ng \ L .

The wing structure at section j must be built to withstand the section bending moment of greater magnitude
between Eq. (43) and (44). When this bending moment is used in Eq. (23), the structural weight at section
7 becomes

7 |Mbj |
Wy, = Sb]- (45)
where Sy, is the proportionality constant at section j
Sb _ Caj (tmaxj /Cj) CjO0max . C. = 21_7 (hj/tmaxj) (46)
J ¥ ' 7 Ajh§

Using the new value for the structural weight calculated from Eq. (45) in Egs. (42) and (16) gives a new
guess for structural weight and total weight that can be used again in Eqs. (43) and (44). The process is
repeated until the structural weight converges to some predetermined convergence criterion.

For any user-defined non-structural weight distribution and lift distribution applied to a prescribed wing
geometry, the process of solving for the structural weight required to support the wing bending moments is
shown in Fig. 6 and summarized as follows:

1. Use Eq. (46) with the properties of the beam to find the proportionality constant at each section.
2. Find the total non-structural weight using Eq. (41).

3. Find the total structural weight using Eq. (42). For the first iteration, assume that Wi, Ws(z) =0
4. Find the total weight using Eq. (16).

5. Find the moment distributions from Eqs. (43)-(44).

Determine which of the bending moments has the greater magnitude at each section.

Find the structural weight at each section by using the bending moment from step 6 in Eq. (45)

® N>

Repeat steps 2-7 with the new structural weight. Continue iterating until the structural weight has
converged to some prescribed convergence criterion.

Using the final total weight along with the input parameters in Eq. (5), the induced drag is calculated.

This algorithm can be coupled with optimization codes to determine optimal values for a wide range of
design variables under various user-defined constraints. In the following sections, we will use the algorithm
described in this section to predict the structural weight and induced drag on an example wing configura-
tion with two different non-structural weight distributions. We will also determine optimal lift distributions
corresponding to each of the non-structural weight distributions.
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¥

Calculate Wsj

[Eq. (45)]
- J

Iterate until Wy converges

Fig. 6 Schematic of wing-structure prediction algorithm.

IV. Example Solutions
The work of Hunsaker et al.?” provides analytical relations to predict the structural weight and optimal
lift distribution for a rectangular wing with constant cross-section. These analytical relations were used
to validate the results found using the wing-structure algorithm described in the previous section. The
following sections compare the results for the wing-structure algorithm to the analytical relations developed
by Hunsaker et al.3” for the rectangular wing configuration defined in Table 1 with a support beam of
rectangular cross-section. Note that the configuration given in Table 1 is a baseline configuration. The values
shown are all held constant unless specified otherwise. We will first examine the structural weight predicted
by the wing-structure algorithm using the configuration given in Table 1 and the non-structural weight
distribution defined by Eq. (19) and validate them using the analytical relations developed by Hunsaker
et al.3” We will then use the algorithm to predict the structural weight for the same configuration with a
spanwise-constant non-structural weight distribution.

Table 1 Properties of test wing and support beam configuration.

b [m] ¢ [m] S [m?]  tmax/C  Omax [Pa] h/tmax ~y
3.1 0.22 0.682 0.12 310 x 106 0.984 26500

W IN W, [N ., ng  plkg/m’] Vi [m/s] m
122 55 10 10 1.223 19 100

A. Hunsaker’s Non-Structural Weight Distribution

The non-structural weight given by Eq. (19) was developed in order to find analytical solutions and
is not intended to represent a practical non-structural weight distribution. However, in order to validate
the numerical results obtained by the wing-structure algorithm, the analysis in this section uses the non-
structural weight distribution given by Eq. (19) and compares the results found by the algorithm to those
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found by Hunsaker et al.3”

For this example, all of the parameters given in Table 1 are held constant. The algorithm’s bending-
moment predictions are found using Eqs. (43) and (44) with the fully converged structural weight distribution,
non-structural weight distribution, and total weight. At each section, the wing structure must be designed
to support the section moment that has greater magnitude between Eqgs. (43) and (44). Figure 7 shows
the distribution of structural weight predicted by the algorithm for the configuration given in Table 1 with
the non-structural weight distribution specified by Eq. (19) compared to those found by Hunsaker et al.?”
using Eq. (27) or (28) in Eq. (23). Results are shown for the elliptic lift distribution from Eq. (6), Prandtl’s
minimum-drag lift distribution®! from Eq. (12), and the lift distribution suggested by Hunsaker et al.3” in
Eq. (39). Notice that the structural weight distribution predicted by the algorithm agrees well with the
structural weight distribution predicted by Hunsaker et al.3” for each of the lift distributions shown.

Integrating each of the structural weight distributions shown in Fig. 7 along the span gives the total
structural weight. The wing-structure algorithm calculates the drag induced by each lift distribution using
Eq. (5) with the fully converged values of total weight. Table 2 compares the structural weight and induced
drag calculated by the algorithm to those found by Hunsaker et al.?”

Notice that the induced drag and total structural weight values predicted by the wing-structure algorithm
match the values predicted by Hunsaker et al.?” This suggests that the wing-structure algorithm provides
a good approximation for the structural weight required to support the bending moments and the drag
induced by a rectangular wing with a given all-positive spanwise-lift distribution and the non-structural
weight distribution given by Eq. (19).

Elliptic lift distribution [Eq. (6)] | ===== Eq. 45)

Hunsaker lift distribution [Eq. (39)]

Prandtl lift distribution [Eq. (12)]

Section structural weight [N/m]
[ )

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Spanwise location [m]

Fig. 7 Comparison of structural weight distributions predicted by the wing-structure algo-
rithm and Hunsaker et al.3” for the test wing defined in Table 1 with the non-structural weight
distribution given by Eq. (19) and prescribed total weight.

Table 2 Comparison of structural weight and induced drag found by the wing-structure al-
gorithm to those found by Hunsaker et al.3” for the wing configuration given in Table 1 with
the non-structural weight distribution given by Eq. (19) and prescribed total weight.

Lift Distribution Induced Drag [N] ‘ Structural Weight [N] ‘
Algorithm  Hunsaker et al.3” | Algorithm Hunsaker et al.3”
Elliptic [Eq. (6)] 2.2333 2.2333 3.2612 3.2612
Prandtl [Eq. (12)] 2.9777 2.9777 2.1741 2.1741
Hunsaker et al.3” [Eq. (39)] 2.3565 2.3565 2.8188 2.8188
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B. Even Non-Structural Weight Distribution

The non-structural weight distribution is typically driven by the non-structural components that are to
be carried in a wing, and in almost all cases, will not follow Eq. (19). For a rectangular wing, an arguably
more realistic alternative is to assume that the non-structural weight is distributed evenly along the wing.
This section provides a more practical example than that shown in the previous section by using wing-
structure algorithm to predict the structural weight for the wing configuration given in Table 1 with an even
non-structural weight distribution.

Using Eq. (41), the total non-structural weight for a spanwise-constant non-structural weight distribution
can be rewritten

. m—1 __ m—2 __ o
Wn+4 > W,+2 W, + W,
=135 §=2,4,6
W, =2 (2 — J 47
(om — 20) — (47)
where Wn has the same value at every section. Equation (47) can be rearranged to give
—~ 3mWw,,

W, = o (48)

2(zm — 20) [3m — 4]

In this example, the total weight given in Table 1 is constrained. Because the total structural weight is
unknown beforehand, the total non-structural weight must be allowed to vary to compensate for variations
in structural weight as the algorithm converges. However, the distribution of this total weight must be
defined. Because the structural weight is a function of the non-structural weight distribution, two different
non-structural weight distributions will result in different values for total non-structural and structural
weight.

If the gross weight and wingspan are held constant, the test configuration with an elliptic lift distribution
and the spanwise-constant non-structural weight distribution given by Eq. (48) gives the same induced drag
as the same configuration with the elliptic lift distribution and the non-structural weight distribution given
by Eq. (19). However, using the spanwise-constant non-structural weight distribution given by Eq. (48), the
wing-structure algorithm predicts a total structural weight that is 33.4 percent greater than that predicted
for the non-structural weight distribution given by Eq. (19). Figure 8 shows the difference in structural
weight distribution predicted by the algorithm for the wing configuration defined in Table 1 with the elliptic
lift distribution and the two non-structural weight distributions given by Egs. (19) and (48). Notice that
the spanwise-constant non-structural weight distribution skews the structural weight distribution more to-
wards the wing root than the non-structural weight distribution defined by Eq. (19). It is also interesting
to note that whereas the maneuvering-flight limit constrains the structural weight if Eq. (19) is used, the

Section structural weight [N/m]

1.6 1.8 2

Spanwise location [m]

Fig. 8 Comparison of structural weight distribution predicted for the wing configuration
defined in Table 1 with an elliptic lift distribution and non-structural weight distribution
given by Eq. (19) vs. Eq. (48).
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hard-landing limit becomes the constraining limit when Eq. (48) is used. Table 3 shows a summary of the
total structural weight and induced drag obtained using the two non-structural weight distributions.

Table 3 Summary of results for induced drag and total structural weight for the wing con-
figuration defined in Table 1 with an elliptic lift distribution and the non-structural weight
distributions given by Eqgs. (19) and (48).

W (2) Definition ‘ Induced Drag [N] ‘ Structural Weight [N]
Eq. (19) 2.2333 3.2612
Eq. (48) 2.2333 4.3348

V. Optimization

The results given in Table 2 support the assertion that the elliptic lift distribution is the optimal lift
distribution for a wing with prescribed gross weight and wingspan. However, in order to find some non-elliptic
optimal lift distribution for a prescribed gross weight alone, the wingspan must be allowed to vary. Optimal
lift distributions for the wing configuration defined in Table 1 can be found by coupling the wing-structure
algorithm with an optimization routine. Using the wing-structure algorithm as an objective function, induced
drag is minimized by varying the Fourier coefficients, B,,, and wingspan, b, while holding the structural
weight, W, constant. During a single iteration, the optimization algorithm chooses values for the wingspan
and the Fourier coefficients and inputs them into the wing-structure algorithm along with the other aircraft
parameters from Table 1. The wing-structure algorithm converges on the structural weight and calculates
drag, which is fed back to the optimization algorithm to determine the next guesses for the wingspan and the
Fourier coefficients. The process is repeated until drag is minimized. Remember that the test configuration
is only used as a baseline design. If wing loading is unconstrained during optimization, the wing area will
vary from the value specified in Table 1 in order to maintain constant chord length. If wing loading is
constrained, the chord length and spar height will vary to maintain constant wing loading.

In this section, the wing-structure algorithm’s predictions for the optimal lift distribution for a wing with
the non-structural weight distribution given by Eq. (19) are validated against the analytical results found
by Hunsaker et al.3” The algorithm is then used to predict the optimal lift distributions for a wing with the
spanwise-constant non-structural weight distribution. The results for the spanwise-constant non-structural
weight distribution include results for both fixed total weight and fixed non-structural weight.

A. Hunsaker’s Non-Structural Weight Distribution

In order to test the wing-structure algorithm’s optimization results, the optimal lift distributions found
using the wing-structure algorithm for the configuration given in Table 1 with the non-structural weight
distribution given in Eq. (19) are compared to those found analytically by Hunsaker et al.’” Using this
non-structural weight distribution, Hunsaker et al.3” determined that if wingspan is allowed to vary with
no constraint placed on wing loading, the lift distribution that minimizes induced drag for some constant
structural weight is equal to Prandtl’s optimal lift distribution®! from Eq. (12). If wing loading is constrained,
however, the optimal lift distribution is given by Eq. (39).

Coupling the wing-structure algorithm with an optimization routine, the predicted optimal lift distribu-
tions for unconstrained wing loading and constrained wing loading match those found by Hunsaker et al.?”
Figure 9 shows the optimal lift distributions predicted by the algorithm with a prescribed structural weight
for both the unconstrained and constrained wing loading case. Table 4 shows a comparison between the
wingspan and induced drag predicted by the algorithm and those predicted by Hunsaker et al.?”
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Fig. 9 Comparison between the elliptic lift distribution, Prandtl’s lift distribution,3' and the
lift distribution found by Hunsaker et al.3” on the wing defined in Table 1 with the non-
structural weight distribution given in Eq. (19) and prescribed structural weight.

Table 4 Summary of results for wingspan and induced drag for the test wing given in Table 1
with the non-structural weight distribution given by Eq. (19) and prescribed structural weight.

Lift Distribution Wingspan [m] Induced Drag [N]

Algorithm  Hunsaker et al.?” | Algorithm Hunsaker et al.?”
Elliptic [Eq. (6)] 3.10 3.10 2.23 2.23
Optimal [W/S unconstrained] 3.80 3.80 1.99 1.99
Optimal [W/S constrained] 3.25 3.25 2.14 2.14

B. Even Non-Structural Weight Distribution

Because the non-structural weight distribution given by Eq. (19) is not practical, the following section
presents the optimization results found by the wing-structure algorithm for the configuration in Table 1
with a spanwise-constant non-structural weight distribution. When the non-structural weight distribution
defined by Eq. (19) is replaced by the spanwise-constant non-structural weight distribution from Eq. (48) on
the wing configuration given in Table 1, the optimization algorithm gives optimal lift distributions that vary
significantly from those shown in Fig. 9. Figure 10 shows the optimal lift distributions with both constrained
and unconstrained wing loading predicted by the wing-structure algorithm for the wing configuration given
in Table 1 with a spanwise-constant non-structural weight distribution. The optimal lift distributions are
shown plotted against the elliptic lift distribution.

It is interesting to note that whereas the optimal lift distributions for the non-structural weight distri-
bution given in Eq. (19) are decidedly non-elliptic, the optimal lift distributions for the spanwise-constant
non-structural weight distribution from Eq. (48) are both nearly elliptic. Table 5 gives a summary of the
results for wingspan and induced drag. Notice that the wingspans allowed by the optimal lift distributions
are nearly equal to the wingspan allowed by the elliptic lift distribution, and the induced drag for each lift
distribution is within one percent of the elliptic solution. However, these results will vary depending on the
value of weight carried at the wing root.

The non-zero Fourier coefficients, B,,, that define the optimal lift distributions from Fig. 10 are shown in
Table 6 for 1 < n < 29. Notice that as n increases, the magnitude of the Fourier coefficients quickly decreases.
This corresponds to a decrease in each coefficient’s influence on the lift distribution, structural weight, and
induced drag. Figure 11 shows the change in induced drag caused by each of the Fourier coefficients from
Table 6. Note that, by n = 5, the Fourier coefficient only influences the induced drag on the order of 10~°
N. These results suggest that the infinite series of Fourier coefficients that define the lift distribution could
be truncated after B3 with little loss of accuracy, and an investigation of the influence of the lift distribution
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Fig. 10 Comparison between the elliptic lift distribution from Eq. (6) and the optimal lift
distributions for both constrained and unconstrained wing loading predicted by the wing-
structure algorithm for the wing configuration defined in Table 1 with an even non-structural
weight distribution and prescribed structural weight.

Table 5 Summary of results for wingspan and induced drag for the test wing given in Table 1
with the non-structural weight distribution given by Eq. (48) and prescribed structural weight.

Lift Distribution ‘ Wingspan [m] Induced Drag [N]
Elliptic [Eq. (6)] 3.100 2.233
Optimal [W/S unconstrained] 3.106 2.229
Optimal [W/S constrained] 3.103 2.232
107! ™ \ \ T \ \ T T \ \ T
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105 o i
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Fig. 11 The change in induced drag caused by each Fourier coefficient given in Table 6 for
the case of constrained wing loading.

on induced drag can be adequately described by examining the influence of B3 alone. Figure 12 shows the
induced drag found using the maximum allowed wingspan for each lift distribution, plotted as a function of
Bjs, for the test configuration defined in Table 1 and an even non-structural weight distribution. As expected,
the values of B3 that minimize induced drag for the constrained and unconstrained wing-loading cases both
fall very near zero.

Up to this point, our analysis has assumed that the total weight is known and that non-structural weight

18 of 24

American Institute of Aeronautics and Astronautics



Table 6 Non-zero Fourier coefficients for 1 < n < 29 that define the optimal lift distributions
for both constrained and unconstrained wing loading, as predicted by the wing-structure
algorithm, for the wing configuration defined in Table 1 with an even non-structural weight
distribution and prescribed structural weight.

Fourier Coefficient | Constrained Wing Loading Unconstrained Wing Loading
By 1 1
Bs 1.87x1072 2.82x1072
Bs 1.10x10~% 1.66x10~%
By 2.99x10~7 4.61x1077
By -6.65%x107? -9.04x107?
By -6.54x107? -7.47x107°
Bis -7.01x107? -2.71x107°
Bis -5.90%x107? -8.60x107°
Bir -7.21x107? -3.60x107°
By -5.93x107? -6.75%x107?
Boy -5.91x107? -2.44%x107°
Bas -6.40x107? -5.64x107°
Bos -4.90x107? -6.39x107?
By -5.68x107? -3.22x107°
By -5.38x107? -5.35x107?
2.8

2.6 o
Elliptic [Eq. (6)]

Optimal [Algorithm]
2.4

Induced Drag [N]

2.2
-025 -02 -0.15 -0.1 —-0.05 0 0.05 0.1 0.15 0.2

Bs

Fig. 12 The induced drag predicted for the wing defined in Table 1 with an even non-structural
weight distribution and the maximum allowed wingspan for both constrained and uncon-
strained wing loading.

can vary to compensate for changes in structural weight. However, neglecting weight lost over time due
to fuel consumption, the non-structural weight in a wing is typically constant for a given flight condition.
Therefore, it is arguably more realistic to set the non-structural weight, instead of the total weight, to some
fixed value. Our remaining analysis will consider the optimization of the lift distribution and wingspan for
the test configuration given in Table 1 with a spanwise-constant non-structural weight distribution and fixed
non-structural weight.

Relaxing the assumption that the total weight is fixed for the wing configuration given in Table 1, and
distributing a prescribed total non-structural weight of W,, = 62 N evenly across the wing, the induced drag
and structural weight predicted by the wing-structure algorithm, as a function of both wingspan and Bs,
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are shown in Fig. 13. Not surprisingly, the optimization algorithm favors a very high-aspect ratio wing to
minimize induced drag when carrying a fixed non-structural weight. Notice that the optimal lift distribution
is obtained using a wingspan that is nearly 180 percent larger than the baseline wingspan given in Table 1.

The dashed lines in Fig. 13 represent lines of constant structural weight. In our previous analyses, the
structural weight was held constant at about 4.33 N. Note that if we begin at an elliptic lift distribution
(B3 = 0) and the wingspan shown in Table 1, the constraint of constant structural weight requires that the
optimization algorithm follow the 4.33 N structural weight contour. As expected, drag is minimized along
this contour at a wingspan very near the baseline wingspan and a lift distribution with Bs very near zero,
which matches the results shown in Tables 5 and 6. However, if structural weight is allowed to vary, the
optimization algorithm is no longer constrained to a single structural weight contour. Instead, minimum
induced drag is achieved with a structural weight that is 38.7 percent of the total weight, and drag is reduced
by about 68.5 percent over the baseline configuration from Table 1 with the elliptic lift distribution.
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—0.301 % Optimal Structural Weight [N]
Baseline Structural Weight [N]
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wingspan [m]

Fig. 13 Variation in induced drag and structural weight with change in wingspan and Bj for
the test configuration given in Table 1 with variable total weight and constant W,, = 62 N

distributed evenly across the wing.

VI. Conclusions

A wide variety of low-fidelity methods have been developed to predict the optimal spanwise load distri-
bution on an aircraft configuration. In general, these methods have shown that lift distributions that shift
lift inboard alleviate moments at the wingtips, allowing a larger wingspan with no added structural weight.
As seen in Eq. (5), certain lift distributions that allow larger wingspans without changing total weight may
induce less drag than the elliptic lift distribution. For example, Prandtl®! found an optimal lift distribution
under the assumptions of fixed gross weight and moment of inertia of gross weight that allowed a 22.5 percent
larger wingspan and produced 11.1 percent less induced drag than the elliptic lift distribution. Building on
Prandtl’s work, Hunsaker et al.3” found a lift distribution under the constraints of prescribed gross weight,
maximum stress, and wing loading that allowed a 4.98 percent larger wingspan and produced 4.25 percent

less induced drag than the elliptic lift distribution.
The analytical approaches taken by Prandtl®' and Hunsaker et al.3” both assumed a straight, rectangular
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wing of constant cross-section. Hunsaker et al.3” also limited their work to the non-structural weight

distribution from Eq. (19) in order to obtain analytical solutions. However, if wing geometry is allowed to
vary along the span, or if some non-structural weight distribution other than that specified in Eq. (19) is
used, the approaches taken by Prandtl! and Hunsaker et al.3” fail to produce analytical solutions.

An algorithm that iteratively solves for the structural weight of a wing configuration with arbitrary
geometry and non-structural weight distribution was developed. This algorithm makes use of a high-order
numerical integration scheme to evaluate the integrals in the relations developed by Hunsaker et al.3” It has
been shown that this algorithm gives results that match those found analytically by Hunsaker et al.?” for a
rectangular wing with the non-structural weight distribution given by Eq. (19). The algorithm’s predictions
for structural weight and its results for optimal lift distribution with and without constraints on wing loading
also match those found by Hunsaker et al.?”

The algorithm was also used to find predictions for structural weight and the optimal lift distributions
for a specific rectangular wing configuration with an even spanwise distribution of non-structural weight.
For this configuration, the algorithm’s results suggest that if total weight is constrained, the optimal lift
distributions are nearly elliptic, and drag benefits are negligible. If the non-structural weight is constrained
and total weight is allowed to vary, the optimal lift distribution is also nearly elliptic, but the optimal
wingspan is nearly 180 percent larger and the induced drag is 68.5 percent less than that produced by the
baseline wing configuration. It was shown that whereas the optimal lift distribution for this configuration
is a function of all Fourier coefficients, the influence of each coefficient, B,,, for n > 5 on induced drag is
minimal. For alternate configurations, the optimal lift distributions and drag benefits will vary from those
shown in this paper.

The analysis in this paper only considered the case of a rectangular wing with two specific non-structural
weight distributions. However, the methods can be applied in a similar manner to wings with arbitrary
geometry and non-structural weight distribution. It is anticipated that these methods can be successfully
applied to a wide variety of practical configurations in the conceptual and preliminary design stages. It is
also anticipated that they will provide greater insight into the coupling of aerodynamics and wing structures.

Appendix

The numerical algorithm presented in section III of this paper assumes a wing that has been discretized
with even spacing in z. However, for many clustering schemes, it is convenient to evenly space nodes in 6.
Each of the equations in the development of the numerical algorithm can be rewritten in terms of 6 using
the change of variables from Eq. (3) and the relation

bsin 6

d:
i 2

do (49)

It is also important to remember when carrying out integration that all distributions are spanwise-symmetric
and that each distribution is integrated across a single semispan. This means that 6 in Eq. (3) ranges between
0 <0< m/2with 6y = 7/2 and 6,, = 0.

Using the change of variables from Eq. (3) and the relation given by Eq. (49), the non-dimensional lift
distribution from Eq. (40) becomes

- ) -
<bLL> = [sin 0; + Y Bysin ejl (50)
j n=2

Using the same change of variables, the total non-structural weight from Eq. (41) can be rewritten

o m—1 __ m—2 __ —
Whesinfo +4 > Wy, sinf; +2 > W, sin; + W,
j=1,3,5 ' j=2,4,6

3m

sin 6,

m

Wn =-b (em - 90)

(51)

21 of 24

American Institute of Aeronautics and Astronautics



and the total structural weight from Eq. (42) becomes

N m—1 __ m—2 __ —
Ws,sinfp+4 > Wy sinf;+2 > W, sind; + W, sind,
j=13,5 j=2,46
Ws = =b(0m — 6o) 3 (52)

Using Eq. (49) and the change of variables from Eq. (3), the maneuvering-flight section bending moment
from Eq. (43) and hard-landing section bending moment from Eq. (44) give

fO)Ea S fer2 S FB0) + F(Bn)

~ ) k=j41,3,5 k=j12,4,6
My, =" (60,, — 6 ;
R ) 3(m — j)
(53)
£(600) :—bs;n% W (é) — W, — Wn] (cos 0, — cosb;)
k
m—1 m—1
- 9(93')+4k 42:1359(91@)*'2}% 42%469(91«)4-9(%)
M, =—-92(0,, —6 =5+13, =j+24,
b= Ot 3(m—J)
(54)
—bsinby |~ L
9(0k) =050 %% W, +Ws, — E — (cos @y — cosb;)
2 ng \ L .

The even non-structural weight distribution from Eq. (48) should also be modified for a wing with even
spacing in §. Rewriting Eq. (47) in terms of 6 gives

m—1 m—2
sinfp+4 > sing;+2 > sing;+sinb,,
J=1,3,5 §=2,4,6
3m

Wy = —b (0, — 00) W, (55)

which can be rearranged to find the section non-structural weight for an even non-structural weight distri-
bution in 6

— 3mW,
W = - — : (56)
b(0 — 6o) |sinby+4 > sinf; +2 > sin6; +sinb,
j=1,3,5 j=2,4,6
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