2,131 research outputs found
Statistical Methods for Thermonuclear Reaction Rates and Nucleosynthesis Simulations
Rigorous statistical methods for estimating thermonuclear reaction rates and
nucleosynthesis are becoming increasingly established in nuclear astrophysics.
The main challenge being faced is that experimental reaction rates are highly
complex quantities derived from a multitude of different measured nuclear
parameters (e.g., astrophysical S-factors, resonance energies and strengths,
particle and gamma-ray partial widths). We discuss the application of the Monte
Carlo method to two distinct, but related, questions. First, given a set of
measured nuclear parameters, how can one best estimate the resulting
thermonuclear reaction rates and associated uncertainties? Second, given a set
of appropriate reaction rates, how can one best estimate the abundances from
nucleosynthesis (i.e., reaction network) calculations? The techniques described
here provide probability density functions that can be used to derive
statistically meaningful reaction rates and final abundances for any desired
coverage probability. Examples are given for applications to s-process neutron
sources, core-collapse supernovae, classical novae, and big bang
nucleosynthesis.Comment: Accepted for publication in J. Phys. G Focus issue "Enhancing the
interaction between nuclear experiment and theory through information and
statistics
Properties of Carbon-Oxygen White Dwarfs From Monte Carlo Stellar Models
We investigate properties of carbon-oxygen white dwarfs with respect to the
composite uncertainties in the reaction rates using the stellar evolution
toolkit, Modules for Experiments in Stellar Astrophysics (MESA) and the
probability density functions in the reaction rate library STARLIB. These are
the first Monte Carlo stellar evolution studies that use complete stellar
models. Focusing on 3 M models evolved from the pre main-sequence to
the first thermal pulse, we survey the remnant core mass, composition, and
structure properties as a function of 26 STARLIB reaction rates covering
hydrogen and helium burning using a Principal Component Analysis and Spearman
Rank-Order Correlation. Relative to the arithmetic mean value, we find the
width of the 95\% confidence interval to be
0.019 M for the core mass at the first thermal pulse,
12.50 Myr for the age, 0.013 for the central temperature, 0.060 for the central density,
2.610 for the central electron
fraction, 5.810,
0.392, and 0.392. Uncertainties in the experimental
C(, triple-, and
N( reaction rates dominate these variations. We
also consider a grid of 1 to 6 M models evolved from the pre
main-sequence to the final white dwarf to probe the sensitivity of the
initial-final mass relation to experimental uncertainties in the hydrogen and
helium reaction rates.Comment: Accepted for publication in The Astrophysical Journal; 19 Pages, 23
Figures, 5 Table
The Effects of Changes in Reaction Rates on Simulations of Nova Explosions
Classical novae participate in the cycle of Galactic chemical evolution in
which grains and metal enriched gas in their ejecta, supplementing those of
supernovae, AGB stars, and Wolf-Rayet stars, are a source of heavy elements for
the ISM. Once in the diffuse gas, this material is mixed with the existing
gases and then incorporated into young stars and planetary systems during star
formation. Infrared observations have confirmed the presence of carbon, SiC,
hydrocarbons, and oxygen-rich silicate grains in nova ejecta, suggesting that
some fraction of the pre-solar grains identified in meteoritic material come
from novae. The mean mass returned by a nova outburst to the ISM probably
exceeds ~2 x 10^{-4} Solar Masses. Using the observed nova rate of 35 per year
in our Galaxy, it follows that novae introduce more than ~7 x 10^{-3} Solar
Masses per year of processed matter into the ISM. Novae are expected to be the
major source of 15N and 17O in the Galaxy and to contribute to the abundances
of other isotopes in this atomic mass range. Here, we report on how changes in
the nuclear reaction rates affect the properties of the outburst and alter the
predictions of the contributions of novae to Galactic chemical evolution. We
also discuss the necessity of including the pep reaction in studies of
thermonuclear runaways in material accreted onto white dwarfs.Comment: 9 pages, 2 figures, as it appeared in the Proceedings of the Tours
2006 Symposium on Nuclear Physic
STARLIB: A Next-Generation Reaction-Rate Library for Nuclear Astrophysics
STARLIB is a next-generation, all-purpose nuclear reaction-rate library. For
the first time, this library provides the rate probability density at all
temperature grid points for convenient implementation in models of stellar
phenomena. The recommended rate and its associated uncertainties are also
included. Currently, uncertainties are absent from all other rate libraries,
and, although estimates have been attempted in previous evaluations and
compilations, these are generally not based on rigorous statistical
definitions. A common standard for deriving uncertainties is clearly warranted.
STARLIB represents a first step in addressing this deficiency by providing a
tabular, up-to-date database that supplies not only the rate and its
uncertainty but also its distribution. Because a majority of rates are
lognormally distributed, this allows the construction of rate probability
densities from the columns of STARLIB. This structure is based on a recently
suggested Monte Carlo method to calculate reaction rates, where uncertainties
are rigorously defined. In STARLIB, experimental rates are supplemented with:
(i) theoretical TALYS rates for reactions for which no experimental input is
available, and (ii) laboratory and theoretical weak rates. STARLIB includes all
types of reactions of astrophysical interest to Z = 83, such as (p,g), (p,a),
(a,n), and corresponding reverse rates. Strong rates account for thermal target
excitations. Here, we summarize our Monte Carlo formalism, introduce the
library, compare methods of correcting rates for stellar environments, and
discuss how to implement our library in Monte Carlo nucleosynthesis studies. We
also present a method for accessing STARLIB on the Internet and outline updated
Monte Carlo-based rates.Comment: Accepted for publication in the Astrophysical Journal Supplement
Series; 96 pages, 22 figure
The Effects of the pep Nuclear Reaction and Other Improvements in the Nuclear Reaction Rate Library on Simulations of the Classical Nova Outburst
We have continued our studies of the Classical Nova outburst by evolving TNRs
on 1.25Msun and 1.35Msun WDs (ONeMg composition) under conditions which produce
mass ejection and a rapid increase in the emitted light, by examining the
effects of changes in the nuclear reaction rates on both the observable
features and the nucleosynthesis during the outburst. In order to improve our
calculations over previous work, we have incorporated a modern nuclear reaction
network into our hydrodynamic computer code. We find that the updates in the
nuclear reaction rate libraries change the amount of ejected mass, peak
luminosity, and the resulting nucleosynthesis. In addition, as a result of our
improvements, we discovered that the pep reaction was not included in our
previous studies of CN explosions. Although the energy production from this
reaction is not important in the Sun, the densities in WD envelopes can exceed
gm cm and the presence of this reaction increases the energy
generation during the time that the p-p chain is operating. The effect of the
increased energy generation is to reduce the evolution time to the peak of the
TNR and, thereby, the accreted mass as compared to the evolutionary sequences
done without this reaction included. As expected from our previous work, the
reduction in accreted mass has important consequences on the characteristics of
the resulting TNR and is discussed in this paper.Comment: Accepted to the Astrophysical Journa
Theoretical Studies of Accretion of Matter onto White Dwarfs and the Single Degenerate Scenario for Supernovae of Type Ia
We present a brief summary of the Single Degenerate Scenario for the
progenitors of Type Ia Supernovae in which it is assumed that a low mass
carbon-oxygen white dwarf is growing in mass as a result of accretion from a
secondary star in a close binary system. Recent hydrodynamic simulations of
accretion of solar material onto white dwarfs without mixing always produce a
thermonuclear runaway and steady burning does not occur. For a broad range in
WD mass (0.4 Solar masses to 1.35 Solar Masses), the maximum ejected material
occurs for the 1.25 Solar Mass sequences and then decreases as the white dwarf
mass decreases. Therefore, the white dwarfs are growing in mass as a
consequence of the accretion of solar material and as long as there is no
mixing of accreted material with core material. In contrast, a thermonuclear
runaway in the accreted hydrogen-rich layers on the low luminosity WDs in close
binary systems where mixing of core matter with accreted material has occurred
is the outburst mechanism for Classical, Recurrent, and Symbiotic novae. The
differences in characteristics of these systems is likely the WD mass and mass
accretion rate. The high levels of enrichment of CN ejecta in elements ranging
from carbon to sulfur confirm that there is dredge-up of matter from the core
of the WD and enable them to contribute to the chemical enrichment of the
interstellar medium. Therefore, studies of CNe can lead to an improved
understanding of Galactic nucleosynthesis, some sources of pre-solar grains,
and the Extragalactic distance scale. The characteristics of the outburst
depend on the white dwarf mass, luminosity, mass accretion rate, and the
chemical composition of both the accreting material and WD material. The
properties of the outburst also depends on when, how, and if the accreted
layers are mixed with the WD core and the mixing mechanism is still unknown.Comment: 25 Pages, Bulletin of the Astronomical Society of India (BASI) in
pres
Primordial Nucleosynthesis
Primordial nucleosynthesis, or Big-Bang Nucleosynthesis (BBN), is one of the
three evidences for the Big-Bang model, together with the expansion of the
Universe and the Cosmic Microwave Background. There is a good global agreement
over a range of nine orders of magnitude between abundances of 4He, D, 3He and
7Li deduced from observations, and calculated in primordial nucleosynthesis.
This comparison was used to determine the baryonic density of the Universe. For
this purpose, it is now superseded by the analysis of the Cosmic Microwave
Background (CMB) radiation anisotropies. However, there remain, a yet
unexplained, discrepancy of a factor 3-5, between the calculated and observed
lithium primordial abundances, that has not been reduced, neither by recent
nuclear physics experiments, nor by new observations. We review here the
nuclear physics aspects of BBN for the production of 4He, D, 3He and 7Li, but
also 6Li, 9Be, 11B and up to CNO isotopes. These are, for instance, important
for the initial composition of the matter at the origin of the first stars.
Big-Bang nucleosynthesis, that has been used, to first constrain the baryonic
density, and the number of neutrino families, remains, a valuable tool to probe
the physics of the early Universe, like variation of "constants" or alternative
theories of gravity.Comment: Invited Plenary Talk given at the 11th International Conference on
Nucleus-Nucleus Collisions (NN2012), San Antonio, Texas, USA, May 27-June 1,
2012. To appear in the NN2012 Proceedings in Journal of Physics: Conference
Series (JPCS
Hydrodynamic Studies of the Evolution of Recurrent, Symbiotic, and Dwarf Novae: The White Dwarf Components are Growing in Mass
Symbiotic binaries are systems containing white dwarfs (WDs) and red giants. Symbiotic novae are those systems in which thermonuclear eruptions occur on the WD components. These are to be distinguished from events driven by accretion disk instabilities analogous to dwarf novae eruptions in cataclysmic variable outbursts. Another class of symbiotic systems are those in which the WD is extremely luminous and it seems likely that quiescent nuclear burning is ongoing on the accreting WD. A fundamental question is the secular evolution of the WD. Do the repeated outbursts or quiescent burning in these accreting systems cause the WD to gain or lose mass? If it is gaining mass, can it eventually reach the Chandrasekhar Limit and become a supernova (a SN Ia if it can hide the hydrogen and helium in the system)? In order to better understand these systems, we have begun a new study of the evolution of Thermonuclear Runaways (TNRs) in the accreted envelopes of WDs using a variety of initial WD masses, luminosities and mass accretion rates. We use our 1-D hydro code, NOVA, which includes the new convective algorithm of Arnett, Meakin and Young, the Hix and Thielemann nuclear reaction solver, the Iliadis reaction rate library, the Timmes equation of state, and the OPAL opacities. We assume a solar composition (Lodders abundance distribution) and do not allow any mixing of accreted material with core material. This assumption strongly influences our results. We report here (1) that the WD grows in mass for all simulations so that canonical `steady burning' does not occur, and (2) that only a small fraction of the accreted matter is ejected in some (but not all) simulations. We also find that the accreting systems, before thermonuclear runaway, are too cool to be seen in X-ray searches for SN Ia progenitors
The 25Mg(p,g)Al reaction at low astrophysical energies
In the present work we report on a new measurement of resonance strengths in
the reaction 25Mg(p,gamma)26Al at E_cm= 92 and 189 keV. This study was
performed at the LUNA facility in the Gran Sasso underground laboratory using a
4pi BGO summing crystal. For the first time the 92 keV resonance was directly
observed and a resonance strength omega-gamma=(2.9+/-0.6)x10E-10 eV was
determined. Additionally, the gamma-ray branchings and strength of the 189 keV
resonance were studied with a high resolution HPGe detector yielding an
omega-gamma value in agreement with the BGO measurement, but 20% larger
compared to previous works.Comment: 6 pages, 4 figures, accepted for publication in Physics Letters
Phase I trial and pharmacological study of a 3-hour paclitaxel infusion in children with refractory solid tumours: a SFOP study
The maximum tolerated dose of paclitaxel administered by 24-hour continuous infusion in children is known. Short infusion might offer equivalent antitumour efficacy and reduced haematological toxicity, without increasing the allergic risk. Our aims were to determine the maximum tolerated dose and the pharmacokinetics of paclitaxel in children when administered in 3-h infusion every 3 weeks. Patients older than 6 months, younger than 20 years with refractory malignant solid tumours were eligible when they satisfied standard haematological, renal, hepatic and cardiologic inclusion criteria with life expectancy exceeding 8 weeks. Paclitaxel was administered as a 3-hour infusion after premedication (dexamethasone, dexchlorpheniramine). Pharmacokinetic analysis and solvent assays (ethanol, cremophor) were performed during the first course. 20 courses were studied in 17 patients; 4 dosage levels were investigated (240 to 420 mg/m2). No dose-limiting haematological toxicity was observed. Severe acute neurological and allergic toxicity was encountered. One treatment-related death occurred just after the infusion at the highest dosage. Delayed peripheral neurotoxicity and moderate allergic reactions were also encountered. Pharmacokinetic analysis showed dose-dependent clearance of paclitaxel and elevated blood ethanol and Cremophor EL levels. Although no limiting haematological toxicity was reached, we do not recommend this paclitaxel schedule in children because of its acute neurological toxicity. © 2001 Cancer Research Campaign http://www.bjcancer.co
- …