553 research outputs found

    Enrichment analysis of Alu elements with different spatial chromatin proximity in the human genome

    Get PDF
    Transposable elements (TEs) have no longer been totally considered as “junk DNA” for quite a time since the continual discoveries of their multifunctional roles in eukaryote genomes. As one of the most important and abundant TEs that still active in human genome, Alu, a SINE family, has demonstrated its indispensable regulatory functions at sequence level, but its spatial roles are still unclear. Technologies based on 3C(chromosomeconformation capture) have revealed the mysterious three-dimensional structure of chromatin, and make it possible to study the distal chromatin interaction in the genome. To find the role TE playing in distal regulation in human genome, we compiled the new released Hi-C data, TE annotation, histone marker annotations, and the genome-wide methylation data to operate correlation analysis, and found that the density of Alu elements showed a strong positive correlation with the level of chromatin interactions (hESC: r=0.9, P<2.2×1016; IMR90 fibroblasts: r = 0.94, P < 2.2 × 1016) and also have a significant positive correlation withsomeremote functional DNA elements like enhancers and promoters (Enhancer: hESC: r=0.997, P=2.3×10−4; IMR90: r=0.934, P=2×10−2; Promoter: hESC: r = 0.995, P = 3.8 × 10−4; IMR90: r = 0.996, P = 3.2 × 10−4). Further investigation involving GC content and methylation status showed the GC content of Alu covered sequences shared a similar pattern with that of the overall sequence, suggesting that Alu elements also function as the GC nucleotide and CpG site provider. In all, our results suggest that the Alu elements may act as an alternative parameter to evaluate the Hi-C data, which is confirmed by the correlation analysis of Alu elements and histone markers. Moreover, the GC-rich Alu sequence can bring high GC content and methylation flexibility to the regions with more distal chromatin contact, regulating the transcription of tissue-specific genes

    Dose dependent effect of statins on postoperative atrial fibrillation after cardiac surgery among patients treated with beta blockers

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Previous studies on the effects of Statins in preventing atrial fibrillation (AF) after cardiac surgery have shown conflicting results. Whether statins prevent AF in patients treated with postoperative beta blockers and whether the statin-effect is dose related are unknown.</p> <p>Methods</p> <p>We retrospectively studied 1936 consecutive patients who underwent coronary artery bypass graft (CABG) (n = 1493) or valve surgery (n = 443) at the Minneapolis Veterans Affairs Medical Center. All patients were in sinus rhythm before the surgery. Postoperative beta blockers were administered routinely (92% within 24 hours postoperatively).</p> <p>Results</p> <p>Mean age was 66+10 years and 68% of the patients were taking Statins. Postoperative AF occurred in 588 (30%) patients and led to longer length of stay in the intensive care unit versus those without AF (5.1+7.6 days versus 2.5+2.3 days, p < 0.0001). Patients with a past history of AF had a 5 times higher risk of postoperative AF (odds ratio 5.1; 95% confidence interval 3.4 to 7.7; p < 0.0001). AF occurred in 31% of patients taking statins versus 29% of the others (p = 0.49). In multivariable analysis, statins were not associated with AF (odds ratio (OR) 0.93, 95% confidence interval (CI) 0.7 to 1.2; p = 0.59). However, in a subgroup analysis, the patients treated with Simvastatin >20 mg daily had a 36% reduction in the risk of postoperative AF (OR 0.64, 95% CI 0.43 to 0.6; p = 0.03) in comparison to those taking lower dosages.</p> <p>Conclusion</p> <p>Among cardiac surgery patients treated with postoperative beta blockers Statin treatment reduces the incidence of postoperative AF when used at higher dosages</p

    Internal and near nozzle measurements of Engine Combustion Network "Spray G" gasoline direct injectors

    Full text link
    [EN] Gasoline direct injection (GDI) sprays are complex multiphase flows. When compared to multi-hole diesel sprays, the plumes are closely spaced, and the sprays are more likely to interact. The effects of multi-jet interaction on entrainment and spray targeting can be influenced by small variations in the mass fluxes from the holes, which in turn depend on transients in the needle movement and small-scale details of the internal geometry. In this paper, we present a comprehensive overview of a multi-institutional effort to experimentally characterize the internal geometry and near-nozzle flow of the Engine Combustion Network (ECN) Spray G gasoline injector. In order to develop a complete pictitre of the near-nozzle flow, a standardized setup was shared between facilities. A wide range of techniques were employed, including both X-ray and visible-light diagnostics. The novel aspects of this work include both new experimental measurements, and a comparison of the results across different techniques and facilities. The breadth and depth of the data reveal phenomena which were not apparent from analysis of the individual data sets. We show that plume-to-plume variations in the mass fluxes from the holes can cause large-scale asymmetries in the entrainment field and spray structure. Both internal flow transients and small-scale geometric features can have an effect on the external flow. The sharp turning angle of the flow into the holes also causes an inward vectoring of the plumes relative to the hole drill angle, which increases with time due to entrainment of gas into a low-pressure region between the plumes. These factors increase the likelihood of spray collapse with longer injection durations.The X-ray experiments were performed at the 7-BM and 32-ID beam lines of the APS at Argonne National Laboratory. Use of the APS is supported by the U.S. Department of Energy (DOE) under Contract No. DE-AC02-06CH11357. Research was also performed at the Combustion Research Facility, Sandia National Laboratories, Livermore, California. Sandia National Laboratories is managed and operated by National Technology and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy National Nuclear Security Administration under contract DE-NA-0003525.Duke, DJ.; Kastengren, AL.; Matusik, KE.; Swantek, AB.; Powell, CF.; Payri, R.; Vaquerizo, D.... (2017). Internal and near nozzle measurements of Engine Combustion Network "Spray G" gasoline direct injectors. Experimental Thermal and Fluid Science. 88:608-621. https://doi.org/10.1016/j.expthermflusci.2017.07.015S6086218

    Climate change promotes parasitism in a coral symbiosis.

    Get PDF
    Coastal oceans are increasingly eutrophic, warm and acidic through the addition of anthropogenic nitrogen and carbon, respectively. Among the most sensitive taxa to these changes are scleractinian corals, which engineer the most biodiverse ecosystems on Earth. Corals' sensitivity is a consequence of their evolutionary investment in symbiosis with the dinoflagellate alga, Symbiodinium. Together, the coral holobiont has dominated oligotrophic tropical marine habitats. However, warming destabilizes this association and reduces coral fitness. It has been theorized that, when reefs become warm and eutrophic, mutualistic Symbiodinium sequester more resources for their own growth, thus parasitizing their hosts of nutrition. Here, we tested the hypothesis that sub-bleaching temperature and excess nitrogen promotes symbiont parasitism by measuring respiration (costs) and the assimilation and translocation of both carbon (energy) and nitrogen (growth; both benefits) within Orbicella faveolata hosting one of two Symbiodinium phylotypes using a dual stable isotope tracer incubation at ambient (26 °C) and sub-bleaching (31 °C) temperatures under elevated nitrate. Warming to 31 °C reduced holobiont net primary productivity (NPP) by 60% due to increased respiration which decreased host %carbon by 15% with no apparent cost to the symbiont. Concurrently, Symbiodinium carbon and nitrogen assimilation increased by 14 and 32%, respectively while increasing their mitotic index by 15%, whereas hosts did not gain a proportional increase in translocated photosynthates. We conclude that the disparity in benefits and costs to both partners is evidence of symbiont parasitism in the coral symbiosis and has major implications for the resilience of coral reefs under threat of global change

    Thermo-electrochemical production of compressed hydrogen from methane with near-zero energy loss

    Full text link
    [EN] Conventional production of hydrogen requires large industrial plants to minimize energy losses and capital costs associated with steam reforming, water-gas shift, product separation and compression. Here we present a protonic membrane reformer (PMR) that produces high-purity hydrogen from steam methane reforming in a single-stage process with near-zero energy loss. We use a BaZrO3-based proton-conducting electrolyte deposited as a dense film on a porous Ni composite electrode with dual function as a reforming catalyst. At 800 degrees C, we achieve full methane conversion by removing 99% of the formed hydrogen, which is simultaneously compressed electrochemically up to 50 bar. A thermally balanced operation regime is achieved by coupling several thermo-chemical processes. Modelling of a small-scale (10 kg H-2 day-1) hydrogen plant reveals an overall energy efficiency of >87%. The results suggest that future declining electricity prices could make PMRs a competitive alternative for industrial-scale hydrogen plants integrating CO2 capture.This work was supported by the Research Council of Norway (grant 256264) and the Spanish Government (SEV-2016-0683 grant).Malerød-Fjeld, H.; Clark, D.; Yuste Tirados, I.; Zanón González, R.; Catalán-Martínez, D.; Beeaff, D.; Hernández Morejudo, S.... (2017). Thermo-electrochemical production of compressed hydrogen from methane with near-zero energy loss. Nature Energy. 2(12):923-931. https://doi.org/10.1038/s41560-017-0029-4S923931212Morejudo, S. H. et al. Direct conversion of methane to aromatics in a catalytic co-ionic membrane reactor. Science 353, 563–566 (2016).Chu, S. & Majumdar, A. Opportunities and challenges for a sustainable energy future. Nature 488, 294–303 (2012).Logan, B. E. & Elimelech, M. Membrane-based processes for sustainable power generation using water. Nature 488, 313–319 (2012).Rostrup-Nielsen, J. R. Catalysis and large-scale conversion of natural gas. Catal. Today 21, 257–267 (1994).Voss, C. Applications of pressure swing adsorption technology. Adsorption 11, 527–529 (2005).Gallucci, F., Fernandez, E., Corengia, P. & van Sint Annaland, M. Recent advances on membranes and membrane reactors for hydrogen production. Chem. Eng. Sci. 92, 40–66 (2013).Boeltken, T., Wunsch, A., Gietzelt, T., Pfeifer, P. & Dittmeyer, R. Ultra-compact microstructured methane steam reformer with integrated Palladium membrane for on-site production of pure hydrogen: Experimental demonstration. Int. J. Hydrogen Energy 39, 18058–18068 (2014).Al-Mufachi, N. A., Rees, N. V. & Steinberger-Wilkens, R. Hydrogen selective membranes: A review of palladium-based dense metal membranes. Renew. Sustainable Energy Rev. 47, 540–551 (2015).Sengodan, S. et al. Layered oxygen-deficient double perovskite as an efficient and stable anode for direct hydrocarbon solid oxide fuel cells. Nat. Mater. 14, 205–209 (2015).Myung, J.-h, Neagu, D., Miller, D. N. & Irvine, J. T. S. Switching on electrocatalytic activity in solid oxide cells. Nature 537, 528–531 (2016).Iwahara, H., Uchida, H., Ono, K. & Ogaki, K. Proton conduction in sintered oxides based on BaCeO3. J. Electrochem. Soc. 135, 529–533 (1988).Hamakawa, S., Hibino, T. & Iwahara, H. Electrochemical methane coupling using proton conductors. J. Electrochem. Soc. 140, 459–462 (1993).Bonanos, N., Knight, K. S. & Ellis, B. Perovskite solid electrolytes: structure, transport properties and fuel cell applications. Solid State Ion. 79, 161–170 (1995).Norby, T. Solid-state protonic conductors: principles, properties, progress and prospects. Solid State Ion. 125, 1–11 (1999).Kreuer, K. D. On the development of proton conducting materials for technological applications. Solid State Ion. 97, 1–15 (1997).Kreuer, K. D. Aspects of the formation and mobility of protonic charge carriers and the stability of perovskite-type oxides. Solid State Ion. 125, 285–302 (1999).Kreuer, K. D. Proton-conducting oxides. Annu. Rev. Mater. Res. 33, 333–359 (2003).Tao, S. W. & Irvine, J. T. S. A stable, easily sintered proton-conducting oxide electrolyte for moderate-temperature fuel cells and electrolyzers. Adv. Mater. 18, 11581-1584 (2006).Wang, H., Peng, R., Wu, X., Hu, J. & Xia, C. Sintering behavior and conductivity study of yttrium-doped BaCeO3–BaZrO3 solid solutions using ZnO additives. J. Am. Ceram. Soc. 92, 2623–2629 (2009).Coors, W. G. in Advances in Ceramics—Synthesis and Characterization, Processing and Specific Applications (Ed. Sikalidis, C.) Ch. 22, 501–520 (InTech, UK, 2011) (2011).Manabe, R. et al. Surface protonics promotes catalysis. Sci. Rep. 6, 38007, (2016).Rohland, B., Eberle, K., Ströbel, R., Scholta, J. & Garche, J. Electrochemical hydrogen compressor. Electrochimica Acta 43, 3841–3846 (1998).Kochetova, N., Animitsa, I., Medvedev, D., Demin, A. & Tsiakaras, P. Recent activity in the development of proton-conducting oxides for high-temperature applications. RSC Adv. 6, 73222–73268 (2016).Yamazaki, Y. et al. Proton trapping in yttrium-doped barium zirconate. Nat. Mater. 12, 647–651 (2013).Kjølseth, C. et al. Space-charge theory applied to the grain boundary impedance of proton conducting BaZr0.9Y0.1O3-δ . Solid State Ion. 181, 268–275 (2010).Coors, W. G A stoichiometric titration method for measuring galvanic hydrogen flux in ceramic hydrogen separation membranes. J. Membr. Sci. 458, 245–253 (2014).Zeppieri, M., Villa, P. L., Verdone, N., Scarsella, M. & De Filippis, P. Kinetic of methane steam reforming reaction over nickel- and rhodium-based catalysts. Appl. Catal. A 387, 147–154 (2010).Wang, B., Zhu, J. & Lin, Z. A theoretical framework for multiphysics modeling of methane fueled solid oxide fuel cell and analysis of low steam methane reforming kinetics. Appl. Energy 176, 1–11 (2016).Overview of Electricity Production and Use in Europe (European Environment Agency, 2016).Edwards, R., Larive, J.-F., Rickeard, D. & Weindorf, W. Well-To-Wheels Analysis of Future Automotive Fuels and Powertrains in the European Context, Well-to-Tank Report Version 4.a, JEC Well-to-Wheels Analysis (Joint Research Centre, 2014).Cho, V. H., Hamilton, B. A. & Kuehn, N. J. Assessment of Hydrogen Production with CO 2 Capture Volume 1: Baseline State-of-the-Art Plants (National Energy Technology Laboratory, 2010).Schjølberg, I. et al. Small-Scale Reformers for On-Site Hydrogen Supply (International Energy Agency-Hydrogen Implementing Agreement, 2012).de Visser, E. et al. Dynamis CO2 quality recommendations. Int. J. Greenhouse Gas Control 2, 478–484 (2008).Bertucciolo, L. et al. Development of Water Electrolysis in the European Union (Fuel Cells and Hydrogen Joint Undertaking, 2014).Edwards, R. et al. Well-To-Wheels Analysis of Future Automotive Fuels and Powertrains in the European Context, Well-to-Wheels Report Version 4.a, JEC Well-to-Wheels Analysis (Joint Research Centre 2014).Huss, A., Maas, H. & Hass, H. Well-to-Wheels Analysis of Future Automotive Fuels and Powertrains in the European Context, Tank-to-Wheels Report Version 4.0, JEC Technical Reports (Joint Research Centre, 2013)

    Corner contributions to holographic entanglement entropy

    Full text link
    The entanglement entropy of three-dimensional conformal field theories contains a universal contribution coming from corners in the entangling surface. We study these contributions in a holographic framework and, in particular, we consider the effects of higher curvature interactions in the bulk gravity theory. We find that for all of our holographic models, the corner contribution is only modified by an overall factor but the functional dependence on the opening angle is not modified by the new gravitational interactions. We also compare the dependence of the corner term on the new gravitational couplings to that for a number of other physical quantities, and we show that the ratio of the corner contribution over the central charge appearing in the two-point function of the stress tensor is a universal function for all of the holographic theories studied here. Comparing this holographic result to the analogous functions for free CFT's, we find fairly good agreement across the full range of the opening angle. However, there is a precise match in the limit where the entangling surface becomes smooth, i.e., the angle approaches π\pi, and we conjecture the corresponding ratio is a universal constant for all three-dimensional conformal field theories. In this paper, we expand on the holographic calculations in our previous letter arXiv:1505.04804, where this conjecture was first introduced.Comment: 62 pages, 6 figures, 1 table; v2: minor modifications to match published version, typos fixe

    Gravitational Waves From Known Pulsars: Results From The Initial Detector Era

    Get PDF
    We present the results of searches for gravitational waves from a large selection of pulsars using data from the most recent science runs (S6, VSR2 and VSR4) of the initial generation of interferometric gravitational wave detectors LIGO (Laser Interferometric Gravitational-wave Observatory) and Virgo. We do not see evidence for gravitational wave emission from any of the targeted sources but produce upper limits on the emission amplitude. We highlight the results from seven young pulsars with large spin-down luminosities. We reach within a factor of five of the canonical spin-down limit for all seven of these, whilst for the Crab and Vela pulsars we further surpass their spin-down limits. We present new or updated limits for 172 other pulsars (including both young and millisecond pulsars). Now that the detectors are undergoing major upgrades, and, for completeness, we bring together all of the most up-to-date results from all pulsars searched for during the operations of the first-generation LIGO, Virgo and GEO600 detectors. This gives a total of 195 pulsars including the most recent results described in this paper.United States National Science FoundationScience and Technology Facilities Council of the United KingdomMax-Planck-SocietyState of Niedersachsen/GermanyAustralian Research CouncilInternational Science Linkages program of the Commonwealth of AustraliaCouncil of Scientific and Industrial Research of IndiaIstituto Nazionale di Fisica Nucleare of ItalySpanish Ministerio de Economia y CompetitividadConselleria d'Economia Hisenda i Innovacio of the Govern de les Illes BalearsNetherlands Organisation for Scientific ResearchPolish Ministry of Science and Higher EducationFOCUS Programme of Foundation for Polish ScienceRoyal SocietyScottish Funding CouncilScottish Universities Physics AllianceNational Aeronautics and Space AdministrationOTKA of HungaryLyon Institute of Origins (LIO)National Research Foundation of KoreaIndustry CanadaProvince of Ontario through the Ministry of Economic Development and InnovationNational Science and Engineering Research Council CanadaCarnegie TrustLeverhulme TrustDavid and Lucile Packard FoundationResearch CorporationAlfred P. Sloan FoundationAstronom

    Models for short term malaria prediction in Sri Lanka

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Malaria in Sri Lanka is unstable and fluctuates in intensity both spatially and temporally. Although the case counts are dwindling at present, given the past history of resurgence of outbreaks despite effective control measures, the control programmes have to stay prepared. The availability of long time series of monitored/diagnosed malaria cases allows for the study of forecasting models, with an aim to developing a forecasting system which could assist in the efficient allocation of resources for malaria control.</p> <p>Methods</p> <p>Exponentially weighted moving average models, autoregressive integrated moving average (ARIMA) models with seasonal components, and seasonal multiplicative autoregressive integrated moving average (SARIMA) models were compared on monthly time series of district malaria cases for their ability to predict the number of malaria cases one to four months ahead. The addition of covariates such as the number of malaria cases in neighbouring districts or rainfall were assessed for their ability to improve prediction of selected (seasonal) ARIMA models.</p> <p>Results</p> <p>The best model for forecasting and the forecasting error varied strongly among the districts. The addition of rainfall as a covariate improved prediction of selected (seasonal) ARIMA models modestly in some districts but worsened prediction in other districts. Improvement by adding rainfall was more frequent at larger forecasting horizons.</p> <p>Conclusion</p> <p>Heterogeneity of patterns of malaria in Sri Lanka requires regionally specific prediction models. Prediction error was large at a minimum of 22% (for one of the districts) for one month ahead predictions. The modest improvement made in short term prediction by adding rainfall as a covariate to these prediction models may not be sufficient to merit investing in a forecasting system for which rainfall data are routinely processed.</p
    corecore