2,160 research outputs found

    Large-N estimates of universal amplitudes of the CP^{N-1} theory and comparison with the JQ model

    Full text link
    We present computations of certain finite-size scaling functions and universal amplitude ratios in the large-N limit of the CP^{N-1} field theory. We pay particular attention to the uniform susceptibility, the spin stiffness and the specific heat. Field theoretic arguments have shown that the long-wavelength description of the phase transition between the Neel and valence bond solid states in square lattice S=1/2 anti-ferromagnets is expected to be the non-compact CP^1 field theory. We provide a detailed comparison between our field theoretic calculations and quantum Monte Carlo data close to the Neel -VBS transition on a S=1/2 square-lattice model with competing four-spin interactions (the JQ model).Comment: 15 page

    Spatiotemporal chaos induces extreme events in an extended microcavity laser

    Full text link
    Extreme events such as rogue wave in optics and fluids are often associated with the merging dynamics of coherent structures. We present experimental and numerical results on the physics of extreme events appearance in a spatially extended semiconductor microcavity laser with intracavity saturable absorber. This system can display deterministic irregular dynamics only thanks to spatial coupling through diffraction of light. We have identified parameter regions where extreme events are encountered and established the origin of this dynamics in the emergence of deterministic spatiotemporal chaos, through the correspondence between the proportion of extreme events and the dimension of the strange attractor

    Combinatorial synthesis of oxysulfides in the lanthanum-bismuth-copper system

    Get PDF
    Establishing synthesis methods for a target material constitutes a grand challenge in materials research, which is compounded with use-inspired specifications on the format of the material. Solar photochemistry using thin film materials is a promising technology for which many complex materials are being proposed, and the present work describes application of combinatorial methods to explore the synthesis of predicted La–Bi–Cu oxysulfide photocathodes, in particular alloys of LaCuOS and BiCuOS. The variation in concentration of three cations and two anions in thin film materials, and crystallization thereof, is achieved by a combination of reactive sputtering and thermal processes including reactive annealing and rapid thermal processing. Composition and structural characterization establish composition-processing-structure relationships that highlight the breadth of processing conditions required for synthesis of LaCuOS and BiCuOS. The relative irreducibility of La oxides and limited diffusion indicate the need for high temperature processing, which conflicts with the temperature limits for mitigating evaporation of Bi and S. Collectively the results indicate that alloys of these phases will require reactive annealing protocols that are uniquely tailored to each composition, motivating advancement of dynamic processing capabilities to further automate discovery of synthesis routes

    SOLUTIONS OF THE LANDAU-VLASOV EQUATION IN NUCLEAR PHYSICS

    Get PDF
    The properties of Vlasov equation solutions obtained by projection on coherent state basis are discussed. Such solutions satisfy stationarity conditions and satisfactorily describe the average diffusivity of nuclear phase space and reproduce the bulk properties of nuclei. Sampling methods and their effects on dynamics are discussed for the study of heavy ion reactions at intermediate energies. The non-local Gogny force is easily computable on this basis which allows to use it for dynamical nuclear studies

    High Throughput Light Absorber Discovery, Part 1: An Algorithm for Automated Tauc Analysis

    Get PDF
    High-throughput experimentation provides efficient mapping of composition–property relationships, and its implementation for the discovery of optical materials enables advancements in solar energy and other technologies. In a high throughput pipeline, automated data processing algorithms are often required to match experimental throughput, and we present an automated Tauc analysis algorithm for estimating band gap energies from optical spectroscopy data. The algorithm mimics the judgment of an expert scientist, which is demonstrated through its application to a variety of high throughput spectroscopy data, including the identification of indirect or direct band gaps in Fe_2O_3, Cu_2V_2O_7, and BiVO_4. The applicability of the algorithm to estimate a range of band gap energies for various materials is demonstrated by a comparison of direct-allowed band gaps estimated by expert scientists and by automated algorithm for 60 optical spectra

    Combinatorial screening yields discovery of 29 metal oxide photoanodes for solar fuel generation

    Get PDF
    Combinatorial synthesis combined with high throughput electrochemistry enabled discovery of 29 ternary oxide photoanodes, 15 with visible light response for oxygen evolution. Y₃Fe₅O₁₂ and trigonal V₂CoO₆ emerge as particularly promising candidates due to their photorepsonse at sub-2.4 eV illumination
    • 

    corecore