171 research outputs found

    Large-scale collective properties of self-propelled rods

    Get PDF
    We study, in two space dimensions, the large-scale properties of collections of constant-speed polar point particles interacting locally by nematic alignment in the presence of noise. This minimal approach to self-propelled rods allows one to deal with large numbers of particles, revealing a phenomenology previously unseen in more complicated models, and moreover distinctively different from both that of the purely polar case (e.g. the Vicsek model) and of active nematics.Comment: Submitted to Phys. Rev. Let

    Synchronization of spatio-temporal chaos as an absorbing phase transition: a study in 2+1 dimensions

    Full text link
    The synchronization transition between two coupled replicas of spatio-temporal chaotic systems in 2+1 dimensions is studied as a phase transition into an absorbing state - the synchronized state. Confirming the scenario drawn in 1+1 dimensional systems, the transition is found to belong to two different universality classes - Multiplicative Noise (MN) and Directed Percolation (DP) - depending on the linear or nonlinear character of damage spreading occurring in the coupled systems. By comparing coupled map lattice with two different stochastic models, accurate numerical estimates for MN in 2+1 dimensions are obtained. Finally, aiming to pave the way for future experimental studies, slightly non-identical replicas have been considered. It is shown that the presence of small differences between the dynamics of the two replicas acts as an external field in the context of absorbing phase transitions, and can be characterized in terms of a suitable critical exponent.Comment: Submitted to Journal of Statistical Mechanics: Theory and Experimen

    Fast moving of a population of robots through a complex scenario

    Get PDF
    Swarm robotics consists in using a large number of coordinated autonomous robots, or agents, to accomplish one or more tasks, using local and/or global rules. Individual and collective objectives can be designed for each robot of the swarm. Generally, the agents' interactions exhibit a high degree of complexity that makes it impossible to skip nonlinearities in the model. In this paper, is implemented both a collective interaction using a modified Vicsek model where each agent follows a local group velocity and the individual interaction concerning internal and external obstacle avoidance. The proposed strategies are tested for the migration of a unicycle robot swarm in an unknown environment, where the effectiveness and the migration time are analyzed. To this aim, a new optimal control method for nonlinear dynamical systems and cost functions, named Feedback Local Optimality Principle - FLOP, is applied

    Characterizing dynamics with covariant Lyapunov vectors

    Full text link
    A general method to determine covariant Lyapunov vectors in both discrete- and continuous-time dynamical systems is introduced. This allows to address fundamental questions such as the degree of hyperbolicity, which can be quantified in terms of the transversality of these intrinsic vectors. For spatially extended systems, the covariant Lyapunov vectors have localization properties and spatial Fourier spectra qualitatively different from those composing the orthonormalized basis obtained in the standard procedure used to calculate the Lyapunov exponents.Comment: 4 pages, 3 figures, submitted to Physical Review letter

    Emergence of chaotic behaviour in linearly stable systems

    Full text link
    Strong nonlinear effects combined with diffusive coupling may give rise to unpredictable evolution in spatially extended deterministic dynamical systems even in the presence of a fully negative spectrum of Lyapunov exponents. This regime, denoted as ``stable chaos'', has been so far mainly characterized by numerical studies. In this manuscript we investigate the mechanisms that are at the basis of this form of unpredictable evolution generated by a nonlinear information flow through the boundaries. In order to clarify how linear stability can coexist with nonlinear instability, we construct a suitable stochastic model. In the absence of spatial coupling, the model does not reveal the existence of any self-sustained chaotic phase. Nevertheless, already this simple regime reveals peculiar differences between the behaviour of finite-size and that of infinitesimal perturbations. A mean-field analysis of the truly spatially extended case clarifies that the onset of chaotic behaviour can be traced back to the diffusion process that tends to shift the growth rate of finite perturbations from the quenched to the annealed average. The possible characterization of the transition as the onset of directed percolation is also briefly discussed as well as the connections with a synchronization transition.Comment: 30 pages, 8 figures, Submitted to Journal of Physics

    Continuous theory of active matter systems with metric-free interactions

    Full text link
    We derive a hydrodynamic description of metric-free active matter: starting from self-propelled particles aligning with neighbors defined by "topological" rules, not metric zones, -a situation advocated recently to be relevant for bird flocks, fish schools, and crowds- we use a kinetic approach to obtain well-controlled nonlinear field equations. We show that the density-independent collision rate per particle characteristic of topological interactions suppresses the linear instability of the homogeneous ordered phase and the nonlinear density segregation generically present near threshold in metric models, in agreement with microscopic simulations.Comment: Submitted to Physical Review Letter

    From multiplicative noise to directed percolation in wetting transitions

    Full text link
    A simple one-dimensional microscopic model of the depinning transition of an interface from an attractive hard wall is introduced and investigated. Upon varying a control parameter, the critical behaviour observed along the transition line changes from a directed-percolation to a multiplicative-noise type. Numerical simulations allow for a quantitative study of the multicritical point separating the two regions, Mean-field arguments and the mapping on a yet simpler model provide some further insight on the overall scenario.Comment: 4 pages, 3 figure

    Nonequilibrium wetting of finite samples

    Full text link
    As a canonical model for wetting far from thermal equilibrium we study a Kardar-Parisi-Zhang interface growing on top of a hard-core substrate. Depending on the average growth velocity the model exhibits a non-equilibrium wetting transition which is characterized by an additional surface critical exponent theta. Simulating the single-step model in one spatial dimension we provide accurate numerical estimates for theta and investigate the distribution of contact points between the substrate and the interface as a function of time. Moreover, we study the influence of finite-size effects, in particular the time needed until a finite substrate is completely covered by the wetting layer for the first time.Comment: 17 pages, 8 figures, revisio

    Lyapunov analysis of multiscale dynamics: the slow bundle of the two-scale Lorenz 96 model

    Get PDF
    We investigate the geometrical structure of instabilities in the two-scale Lorenz 96 model through the prism of Lyapunov analysis. Our detailed study of the full spectrum of covariant Lyapunov vectors reveals the presence of a slow bundle in tangent space, composed by a set of vectors with a significant projection onto the slow degrees of freedom; they correspond to the smallest (in absolute value) Lyapunov exponents and thereby to the longer timescales. We show that the dimension of the slow bundle is extensive in the number of both slow and fast degrees of freedom and discuss its relationship with the results of a finite-size analysis of instabilities, supporting the conjecture that the slow-variable behavior is effectively determined by a nontrivial subset of degrees of freedom. More precisely, we show that the slow bundle corresponds to the Lyapunov spectrum region where fast and slow instability rates overlap, “mixing” their evolution into a set of vectors which simultaneously carry information on both scales. We suggest that these results may pave the way for future applications to ensemble forecasting and data assimilations in weather and climate models

    Contact processes with long-range interactions

    Full text link
    A class of non-local contact processes is introduced and studied using mean-field approximation and numerical simulations. In these processes particles are created at a rate which decays algebraically with the distance from the nearest particle. It is found that the transition into the absorbing state is continuous and is characterized by continuously varying critical exponents. This model differs from the previously studied non-local directed percolation model, where particles are created by unrestricted Levy flights. It is motivated by recent studies of non-equilibrium wetting indicating that this type of non-local processes play a role in the unbinding transition. Other non-local processes which have been suggested to exist within the context of wetting are considered as well.Comment: Accepted with minor revisions by Journal of Statistical Mechanics: Theory and experiment
    corecore