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Large-scale collective properties of self-propelled rods
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We study, in two space dimensions, the large-scale properties of collections of constant-speed
polar point particles interacting locally by nematic alignment in the presence of noise. This minimal
approach to self-propelled rods allows one to deal with large numbers of particles, revealing a
phenomenology previously unseen in more complicated models, and moreover distinctively different
from both that of the purely polar case (e.g. the Vicsek model) and of active nematics.

PACS numbers: 05.65.+b, 87.18.Hf, 87.18.Gh

Collective motion is an ubiquitous phenomenon ob-
servable at all scales, in natural systems [1] as well as
human societies [2]. The mechanisms at its origin can
be remarkably varied. For instance, they may involve
the hydrodynamic interactions mediated by the fluid in
which bacteria swim [3], the long-range chemical signal-
ing driving the formation and organization of aggregation
centers of Dictyostelium discoideum amoeba cells [4], or
the local cannibalistic interactions between marching lo-
custs [5]. In spite of this diversity, one may search for
possible universal features of collective motion, a context
in which the study of “minimal” models is a crucial step.
Recently, the investigation of the simplest cases, where
the problem is reduced to the competition between a lo-
cal aligning interaction and some noise, has revealed a
wealth of unexpected collective properties. For example,
constant speed, self-propelled, polar point particles with
ferromagnetic interactions subjected to noise (as in the
Vicsek model [6]) can form a collectively moving fluctu-
ating phase with long-range polar order even in two spa-
tial dimensions [7], with striking properties such as spon-
taneous segregation into ordered solitary bands moving
in a sparse, disordered sea, or anomalous (“giant”) den-
sity fluctuations [8]. In contrast, active apolar particles
with nematic interactions only exhibit quasi-long-range
nematic order in two dimensions with segregation taking
the form of a single, strongly-fluctuating, dense structure
with longitudinal order and even stronger density fluctu-
ations than in the polar-ferromagnetic case [9, 10, 11].

Noting that these differences reflect those in the lo-
cal symmetry of particles and their interactions, a third
situation can be defined, intermediate between the po-
lar ferromagnetic model and the apolar nematic one,
that of self-propelled polar particles aligning nematically

[12]. Such a mechanism is typically induced by volume
exclusion interactions, when elongated particles collid-
ing almost head-on slide past each other, as illustrated
schematically in Fig. 1. Thus, self-propelled polar point
particles with apolar interactions can be conceived as a
minimal model for self-propelled rods interacting by in-
elastic collisions [13, 14, 15]. Other relevant situations

FIG. 1: Nematic alignment of polar particles illustrated by
inelastic collisions of rods. Particles incoming at a small angle
(left) align “polarly”, but those colliding almost head-on slide
past each other, maintaining their nematic alignment (right).

can be found in a biological context, such as gliding
myxobacteria moving on a substrate [16], or microtubules
driven by molecular motors grafted on a surface [17].

In this Letter, we study collections of constant-speed
polar point particles interacting locally by nematic align-
ment in the presence of noise. The simplicity of this
model allows us to deal with large numbers of particles,
revealing a phenomenology previously unseen in more
complicated models sharing the same symmetries [13, 14,
15]. Our study, restricted to two space dimensions, shows
in particular collective properties distinctively different
from both those of polar-ferromagnetic case and of ac-
tive nematics: only nematic order arises in spite of the
polar nature of the particles, but it seems genuinely long-
ranged. Spontaneous density segregation is also observed
but it is of a different type and it splits both the (nemat-
ically) ordered and the disordered phase in two. In the
following, we characterize these four phases and discuss
the three transitions separating them.

Our model consists of N point particles moving off-
lattice at constant speed v0. In two dimensions, particle
j is defined by its (complex) position r

t
j and orientation

θt
j , updated at discrete time steps according to

θt+1
j = arg





∑

k∼j

sign
[

cos(θt
k − θt

j)
]

eiθt

k



 + ηξt
j (1)

r
t+1
j = r

t
j + v0 eiθ

t+1

k , (2)

where the sum is taken over all particles k within unit dis-
tance of j (including j itself), and ξ is a white noise uni-
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FIG. 2: (color online) (a-c) Typical steady-state snapshots at different noise values (linear size L = 2048). (a) η = 0.08, (b)
η = 0.10, (c) η = 0.13, (d) η = 0.168, (e) η = 0.20. Arrows indicate the polar orientation of particles (except in (d)); only a
fraction of the particles are shown for clarity reasons. For a movie corresponding to (d) see [21].

formly distributed in
[

−π
2
, π

2

]

[18]. (A continuous-time
version of this model can be found in [19].) The system
has two main control parameters: the noise amplitude η,
and the particle density ρ = N/A, where A is the do-
main area. We consider periodic boundary conditions.
Polar and nematic order can be characterized by means
of the two time-dependent global scalar order parameters
P (t) = |〈exp(iθt

j)〉j | (polar) and S(t) = |〈exp(i2θt
j)〉j |

(nematic), as well as their asymptotic time averages
P = 〈P (t)〉t and S = 〈S(t)〉t.

In this work, we focus on the behavior of the system for
ρ = 1

8
and v0 = 1/2, varying η. We start with a brief sur-

vey of the stationary states observed in a square domain
of linear size L = 2048 (Figs. 2-3). Despite the polar
nature of the particles, only nematic orientational order
arises at low noise strengths, while P always remains near
zero (not shown). This is in agreement with the findings
of [20]. Both the ordered and the disordered regimes are
subdivided in two phases, one that is spatially homoge-
neous (Figs. 2(a,e)), and one where spontaneous density
segregation occurs, leading to high-density ordered bands
along which the particles move back and forth (Figs. 2(b-
d)). A total of four phases is thus observed, labeled I to
IV by increasing noise strength hereafter. Phases I and II
are nematically ordered, phases III and IV are disordered.
Below, we study these four phases more quantitatively.

Phase I, present at the lowest η values, is ordered
and spatially homogeneous (Fig. 2a). Its nematic or-
der, which arises quickly from any initial condition, is
due to the existence, at any time, of two subpopulations
of particles that migrate in opposite directions (Fig. 4a).
Statistically of equal size, they constantly exchange par-
ticles, those which “turn around”. These events occur
at exponentially-distributed times τ (Fig. 4b). Increas-
ing system size, the nematic order parameter S is almost
constant, decaying slower than a power law (Fig. 4c).
A good fit of this decay is given by an algebraic ap-
proach to a constant asymptotic value S∗. Thus, our data
seem to indicate the existence of true long-range nematic

order. (Quasi-long-range order, expected classically for
two-dimensional nematic phases, is characterized by an
algebraic decay of S.) A discussion of this striking fact
is given below. Finally, as expected on general grounds
for homogeneous ordered phases of active particles [10],
phase I exhibits so-called giant number fluctuations: the
fluctuations ∆n2 = 〈(n − 〈n〉)2〉 of the average number
of particles 〈n〉 = ρℓ2 contained in a square of linear size
ℓ follow the power law ∆n ∼ 〈n〉α with α > 1

2
(Fig. 4d).

Our estimate of α is compatible to that measured for
polarly ordered phases α = 0.8 [8].

Phase II differs from phase I by the presence, in
the steady-state, of a low-density disordered region. In
large-enough systems (104-105 particles for the parame-
ters used here), a narrow, low density channel emerges
(Fig. 2b) when increasing η from phase I. It becomes
wider at larger η values, so that one can then speak of a
high-density ordered band, typically oriented along one
of the main axes of the box, amidst a disordered sea
(Fig. 2c). Particles travel along the high-density band,
turning around or leaving the band from time to time.
Within the band, nematic order with properties similar
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FIG. 3: (color online) Nematic order parameter S (in black)
and its rms fluctuations ∆S (in red) as function of the squared
noise amplitude η2 for a square domain of linear size L =
2048. Here, and throughout the paper, time-averages are over
at least 106 timesteps.
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FIG. 4: (color online) Phase I (homogeneous nematic order,
η = 0.095). (a) Polar orientation probability distribution in
a system of size L = 2048. (b) Distribution of particles tran-
sition times τ between the two peaks of (a) for three differ-
ent system sizes L = 512, 1024, and 2048 (black, red, and
blue lines respectively). (c) Nematic order parameter S vs
system size L in square domains. The vertical red dashed
line marks the persistence length χ ≈ 4400 (see text). In-

set: S − S∗ = 0.813063 vs L (red dashed line: L−2/3 decay).
(d) Number fluctuations ∆n as a function of average particle
number 〈n〉 (see text) in a system of size L = 4096 (dashed
line: algebraic growth with exponent 0.8).

to those of phase I is found (slow decay of S with system
size, giant number fluctuations). The (rescaled) band
possesses a well-defined profile with sharper and sharper
edges as L increases (Fig. 5a). The fraction area Ω oc-
cupied by the band is thus asymptotically independent
of system size, and it decreases continuously as the noise
strength η increases (Fig. 5b).

In phase III, spontaneous segregation into bands still
occurs (for large-enough domains), however these thin-
ner bands are unstable and constantly bend, break, re-
form, and merge, in an unending spectacular display of
space-time chaos (Fig. 2d) [21]. Correspondingly, S(t)
fluctuates strongly (Fig. 3) and on very large time scales
(Figs. 6a). Nevertheless, these fluctuations behave nor-
mally (i.e. decrease like 1/

√
N , Fig. 6b). Thus, the

space-time chaos self-averages, making phase III a bona
fide disordered phase, albeit one with huge correlation
lengths and times.

Phase IV, observed for the highest noise strengths, ex-
hibits local and global disorder on small length- and time-
scales, and is spatially homogeneous (Fig. 2e).

We now discuss briefly the nature of the three transi-
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FIG. 5: (color online) Phase II (stable bands) (a) Rescaled
transverse profiles in square domains of linear size L = 512
(black), 1024 (red), and 2048 (blue) at η = 0.14. (Data av-
eraged over the longitudinal direction and time, translated to
be centered at the same location.) Bottom: density profiles.
Top: nematic order parameter profiles. (b) Surface fraction Ω
as a function of noise amplitude η (defined here as the width
at mid-height of the rescaled S profile).

tions that separate the four observed phases (details will
appear elsewhere [22]) . The I–II transition, located at
ηI−II ≃ 0.098(2), is characterized by the emergence of a
narrow low-density disordered channel. Within phase II,
the emergence of these structures from disordered initial
conditions is reminiscent of a nucleation process. Even
though the emerging channels might occupy an arbitrar-
ily small proportion of space near the transition (Ω ∼ 1
for η >∼ ηI−II), they seem to possess a minimum absolute
width. These facts suggest a discontinuous I–II transi-
tion. The transition between phase II and III, located
near ηII−III ≃ 0.163(1), constitutes the order-disorder
transition of the model. As mentioned above, it resem-
bles a long-but-finite wavelength instability of the band
(see, e.g., Fig. 6c) and does not appear as a fluctuation-
driven phase transition. The disorder-disorder transition
between phases III and IV occurs near ηIII−IV ≃ 0.169(1),
where the instantaneous order parameter S(t) exhibits a
bistable behavior between a low value, fast fluctuating
state typical of phase IV and a larger amplitude, slowly
fluctuating one characteristic of phase III. This bistabil-
ity, leading to a bimodal order parameter distribution,
suggests a discontinuous phase transition.

At this point, the most crucial question is perhaps that
of the stability of the nematic order observed in phases
I and II. Indeed, much of what we described above for
large but finite systems relies on our conclusion of possi-
ble truly long-range (asymptotic) order (Fig. 4c). On the
one hand, one could argue that the exponential distribu-
tions of flight times between the two opposite polar orien-
tations (Fig. 4b) define a finite persistence time τ and a
corresponding finite persistence lengthscale χ ≈ v0τ (in-
dicated by the blue dashed line in Fig. 4c). Therefore, at
scales much larger than χ, the polar nature of our parti-
cles could become irrelevant, and the system would then
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FIG. 6: Phase III (unstable bands, η = 0168). (a) Typical
nematic order parameter time series for a system of linear
size L = 2048. (b) S vs N in square domains of increasing

sizes. (The dashed line marks a 1/
√

N decay.) (c) Snapshot
of coarse-grained density field during the growth of the insta-
bility of an initially straight band in a 2048 × 512 domain.

behave like a fully nematic one, with only quasi-long-
range order. As of now, we have been able to probe sys-
tems sizes up to three or four times the persistence length
χ. So far, as shown in Fig. 4c, these systems comprising
up to twenty million particles show no sign of breakdown
of order. On the other hand, χ is a single-particle quan-
tity. Even though it is finite and system size independent,
particles travel in rather dense polar packets which have
flights longer than χ. Indeed, the giant density fluctu-
ations reported (Fig. 4d) indicate that denser, more or-
dered, and hence probably longer-lived packets occur in
larger systems. Unfortunately, packets’ flight times are
hard to define and measure [22]. But should this “polar
packet lifetime” diverge with system size, then one would
have a mechanism opening the door for the emergence of
true long-range nematic order. To summarize this dis-
cussion, nematic order could break down for sizes much
larger than χ, but our data (Figs. 4c,d) and the argument
above suggest the picture of two opposite polar compo-
nents each with true long-range order (as in fully-polar
models [23]) summing up to true nematic order.

Further work is thus needed, but most of our results
are rather robust. For instance, the introduction of some
soft-core short-range repulsion between particles does not

modify our main findings [22]. Thus, these are not due
to the pointwise nature of the particles, and should also
be observed in previous, more detailed models of self-
propelled rods if sufficiently-large populations are con-
sidered. We note also that our results, and in particular
the instability and space-time chaotic motion of the spon-
taneously segregated bands (phases II and III) [21], are
reminiscent of the streaming and swirling regime which

characterizes the aggregation of myxobacteria [16, 24]
and thus our model could prove relevant in this context.

At a more general level, our findings reveal unex-
pected emergent behavior among even the simplest situ-
ations giving rise to collective motion. Our model of self-
propelled polar objects aligning nematically stands out as
a member of a universality class distinct from both that
of the Vicsek model [6, 7, 8] and of active nematics [9].
Thus, in this out-of-equilibrium context, the symmetries
of the moving particles and of their interactions must be
considered separately and are both relevant ingredients.

We thank J. Toner and S. Ramaswamy for fruitful dis-
cussions. This work was partially funded by the French
ANR projects “Morphoscale” and “Panurge”, and the
German DFG grants DE842/2, SFB 555, and GRK 1558.

[1] Three Dimensional Animals Groups, edited by J.K. Par-
rish and W.M Hamner (Cambridge University Press,
Cambridge, England, 1997), and references therein.

[2] D. Helbing, I. Farkas, and T. Vicsek, Nature (London)
407, 487 (2000).

[3] A. Sokolov, et al., Phys. Rev. Lett. 98, 158102 (2007).
[4] E. Ben-Jacob et al., Adv. Phys. 49, 395 (2000).
[5] P. Romanczuk, I.D. Couzin, and L. Schimansky-Geier,

Phys. Rev. Lett. 102, 010602 (2009).
[6] T. Vicsek et al., Phys. Rev. Lett. 75, 1226 (1995).
[7] J. Toner, and Y. Tu, Phys. Rev. Lett. 75, 4326 (1995);

Phys. Rev. E 58, 4828 (1998).
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