83 research outputs found

    Assessment of aberrant DNA methylation two years after paediatric critical illness:a pre-planned secondary analysis of the international PEPaNIC trial

    Get PDF
    Critically ill children requiring intensive care suffer from impaired physical/neurocognitive development 2 y later, partially preventable by omitting early use of parenteral nutrition (early-PN) in the paediatric intensive-care-unit (PICU). Altered methylation of DNA from peripheral blood during PICU-stay provided a molecular basis hereof. Whether DNA-methylation of former PICU patients, assessed 2 y after critical illness, is different from that of healthy children remained unknown. In a pre-planned secondary analysis of the PEPaNIC-RCT (clinicaltrials.gov-NCT01536275) 2-year follow-up, we assessed buccal-mucosal DNA-methylation (Infinium-HumanMethylation-EPIC-BeadChip) of former PICU-patients (N = 406 early-PN; N = 414 late-PN) and matched healthy children (N = 392). CpG-sites differentially methylated between groups were identified with multivariable linear regression and differentially methylated DNA-regions via clustering of differentially methylated CpG-sites using kernel-estimates. Analyses were adjusted for technical variation and baseline risk factors, and corrected for multiple testing (false-discovery-rate <0.05). Differentially methylated genes were functionally annotated (KEGG-pathway database), and allocated to three classes depending on involvement in physical/neurocognitive development, critical illness and intensive medical care, or pre-PICU-admission disorders. As compared with matched healthy children, former PICU-patients showed significantly different DNA-methylation at 4047 CpG-sites (2186 genes) and 494 DNA-regions (468 genes), with most CpG-sites being hypomethylated (90.3%) and with an average absolute 2% effect-size, irrespective of timing of PN initiation. Of the differentially methylated KEGG-pathways, 41.2% were related to physical/neurocognitive development, 32.8% to critical illness and intensive medical care and 26.0% to pre-PICU-admission disorders. Two years after critical illness in children, buccal-mucosal DNA showed abnormal methylation of CpG-sites and DNA-regions located in pathways known to be important for physical/neurocognitive development

    Aplicación para procesamiento de imágenes metalográficas desde PME3

    Get PDF
    La información en forma de datos y medidas, suministrada por imágenesmetalográfi cas, es importante en la caracterización de materiales.La efi ciencia en el tratamiento de tal información, es crucialpara una exitosa gestión de laboratorio en ingeniería. Este artículo,muestra el análisis, desarrollo, e implementación de una aplicacióncomputacional, desarrollada enteramente en Java (netbeans versión6.8 “GNU”), que captura, edita (bordes, suavizados, realces, distancias,inversión de colores, escala de grises, brillo, zoom móvil y fi jo),y guarda imágenes metalográfi cas, proporcionadas por el microscopioOLYMPUS PME3®

    Predicting adverse long-term neurocognitive outcomes after pediatric intensive care unit admission

    Get PDF
    Background and objective: Critically ill children may suffer from impaired neurocognitive functions years after ICU (intensive care unit) discharge. To assess neurocognitive functions, these children are subjected to a fixed sequence of tests. Undergoing all tests is, however, arduous for former pediatric ICU patients, resulting in interrupted evaluations where several neurocognitive deficiencies remain undetected. As a solution, we propose using machine learning to predict the optimal order of tests for each child, reducing the number of tests required to identify the most severe neurocognitive deficiencies. Methods: We have compared the current clinical approach against several machine learning methods, mainly multi-target regression and label ranking methods. We have also proposed a new method that builds several multi-target predictive models and combines the outputs into a ranking that prioritizes the worse neurocognitive outcomes. We used data available at discharge, from children who participated in the PEPaNIC-RCT trial (ClinicalTrials.gov-NCT01536275), as well as data from a 2-year follow-up study. The institutional review boards at each participating site have also approved this follow-up study (ML8052; NL49708.078; Pro00038098). Results: Our proposed method managed to outperform other machine learning methods and also the current clinical practice. Precisely, our method reaches approximately 80% precision when considering top-4 outcomes, in comparison to 65% and 78% obtained by the current clinical practice and the state-of-the-art method in label ranking, respectively. Conclusions: Our experiments demonstrated that machine learning can be competitive or even superior to the current testing order employed in clinical practice, suggesting that our model can be used to severely reduce the number of tests necessary for each child. Moreover, the results indicate that possible long-term adverse outcomes are already predictable as early as at ICU discharge. Thus, our work can be seen as the first step to allow more personalized follow-up after ICU discharge leading to preventive care rather than curative.</p

    Predicting adverse long-term neurocognitive outcomes after pediatric intensive care unit admission

    Get PDF
    Background and objective: Critically ill children may suffer from impaired neurocognitive functions years after ICU (intensive care unit) discharge. To assess neurocognitive functions, these children are subjected to a fixed sequence of tests. Undergoing all tests is, however, arduous for former pediatric ICU patients, resulting in interrupted evaluations where several neurocognitive deficiencies remain undetected. As a solution, we propose using machine learning to predict the optimal order of tests for each child, reducing the number of tests required to identify the most severe neurocognitive deficiencies. Methods: We have compared the current clinical approach against several machine learning methods, mainly multi-target regression and label ranking methods. We have also proposed a new method that builds several multi-target predictive models and combines the outputs into a ranking that prioritizes the worse neurocognitive outcomes. We used data available at discharge, from children who participated in the PEPaNIC-RCT trial (ClinicalTrials.gov-NCT01536275), as well as data from a 2-year follow-up study. The institutional review boards at each participating site have also approved this follow-up study (ML8052; NL49708.078; Pro00038098). Results: Our proposed method managed to outperform other machine learning methods and also the current clinical practice. Precisely, our method reaches approximately 80% precision when considering top-4 outcomes, in comparison to 65% and 78% obtained by the current clinical practice and the state-of-the-art method in label ranking, respectively. Conclusions: Our experiments demonstrated that machine learning can be competitive or even superior to the current testing order employed in clinical practice, suggesting that our model can be used to severely reduce the number of tests necessary for each child. Moreover, the results indicate that possible long-term adverse outcomes are already predictable as early as at ICU discharge. Thus, our work can be seen as the first step to allow more personalized follow-up after ICU discharge leading to preventive care rather than curative.</p

    Health-related quality of life of children and their parents 2 years after critical illness

    Get PDF
    Background: Pediatric intensive care unit (PICU) survivors are at risk for prolonged morbidities interfering with daily life. The current study examined parent-reported health-related quality of life (HRQoL) in former critically ill children and parents themselves and aimed to determine whether withholding parenteral nutrition (PN) in the first week of critical illness affected children’s and parents’ HRQoL 2 years later. Methods: Children who participated in the pediatric early versus late parenteral nutrition in critical illness (PEPaNIC) trial and who were testable 2 years later (n = 1158) were included. Their HRQoL outcomes were compared with 405 matched healthy controls. At PICU admission, childre

    The association of hypoglycemia with outcome of critically ill children in relation to nutritional and blood glucose control strategies

    Get PDF
    Abstract Background Withholding parenteral nutrition (PN) until one week after PICU admission facilitated recovery from critical illness and protected against emotional and behavioral problems 4 years later. However, the intervention increased the risk of hypoglycemia, which may have counteracted part of the benefit. Previously, hypoglycemia occurring under tight glucose control in critically ill children receiving early PN did not associate with long-term harm. We investigated whether hypoglycemia in PICU differentially associates with outcome in the context of withholding early PN, and whether any potential association with outcome may depend on the applied glucose control protocol. Methods In this secondary analysis of the multicenter PEPaNIC RCT, we studied whether hypoglycemia in PICU associated with mortality (N = 1440) and 4-years neurodevelopmental outcome (N = 674) through univariable comparison and multivariable regression analyses adjusting for potential confounders. In patients with available blood samples (N = 556), multivariable models were additionally adjusted for baseline serum NSE and S100B concentrations as biomarkers of neuronal, respectively, astrocytic damage. To study whether an association of hypoglycemia with outcome may be affected by the nutritional strategy or center-specific glucose control protocol, we further adjusted the models for the interaction between hypoglycemia and the randomized nutritional strategy, respectively, treatment center. In sensitivity analyses, we studied whether any association with outcome was different in patients with iatrogenic or spontaneous/recurrent hypoglycemia. Results Hypoglycemia univariably associated with higher mortality in PICU, at 90 days and 4 years after randomization, but not when adjusted for risk factors. After 4 years, critically ill children with hypoglycemia scored significantly worse for certain parent/caregiver-reported executive functions (working memory, planning and organization, metacognition) than patients without hypoglycemia, also when adjusted for risk factors including baseline NSE and S100B. Further adjustment for the interaction of hypoglycemia with the randomized intervention or treatment center revealed a potential interaction, whereby tight glucose control and withholding early PN may be protective. Impaired executive functions were most pronounced in patients with spontaneous or recurrent hypoglycemia. Conclusion Critically ill children exposed to hypoglycemia in PICU were at higher risk of impaired executive functions after 4 years, especially in cases of spontaneous/recurrent hypoglycemia

    Time course of altered DNA methylation evoked by critical illness and by early administration of parenteral nutrition in the paediatric ICU

    Get PDF
    Background: A genome-wide study identifed de novo DNA methylation alterations in leukocytes of children at paediatric intensive care unit (PICU) discharge, ofering a biological basis for their impaired long-term development. Early parenteral nutrition (early-PN) in PICU, compared with omitting PN in the frst week (late-PN), explained diferential methylation of 23% of the afected CpG-sites. We documented the time course of altered DNA methylation in PICU and the impact hereon of early nutritional management. Results: We selected 36 early-PN and 36 late-PN matched patients, and 42 matched healthy children. We quantifed DNA methylation on days 3, 5 and 7 for the 147 CpG-sites of which methylation was normal upon PICU admission in this subset and altered by critical illness at PICU discharge. Methylation in patients difered from healthy children for 64.6% of the 147 CpG-sites on day 3, for 72.8% on day 5 and for 90.5% on day 7 as revealed by ANOVA at each time point. Within-patients methylation time course analyses for each CpG-site identifed diferent patterns based on paired t test p value and direction of change. Rapid demethylation from admission to day 3 occurred for 76.2% of the CpG-sites, of which 67.9% remained equally demethylated or partially remethylated and 32.1% further demethylated beyond day 3. From admission to day 3, 19.7% of the CpG-sites became hypermethylated, of which, beyond day 3, 34.5% remained equally hypermethylated or partially demethylated again and 65.5% further hypermethylated. For 4.1% of the CpG-sites, changes only appeared beyond day 3. Finally, for the CpG-sites afected by early-PN on the last PICU day, earlier changes in DNA methylation were compared for early-PN and late-PN patients, revealing that 38.9% were already diferentially methylated by day 3, another 25.0% by day 5 and another 13.9% by day 7. Conclusions: Critical illness- and early-PN-induced changes in DNA methylation occurred mainly within 3 days. Most abnormalities were at least partially maintained or got worse with longer time in PICU. Interventions targeting aberrant DNA methylation changes should be initiated earl
    corecore