47 research outputs found

    Climate Change and the Potential Spreading of Marine Mucilage and Microbial Pathogens in the Mediterranean Sea

    Get PDF
    Background: Marine snow (small amorphous aggregates with colloidal properties) is present in all oceans of the world. Surface water warming and the consequent increase of water column stability can favour the coalescence of marine snow into marine mucilage, large marine aggregates representing an ephemeral and extreme habitat. Marine mucilage characterize aquatic systems with altered environmental conditions. Methodology/Principal Findings: We investigated, by means of molecular techniques, viruses and prokaryotes within the mucilage and in surrounding seawater to examine the potential of mucilage to host new microbial diversity and/or spread marine diseases. We found that marine mucilage contained a large and unexpectedly exclusive microbial biodiversity and hosted pathogenic species that were absent in surrounding seawater. We also investigated the relationship between climate change and the frequency of mucilage in the Mediterranean Sea over the last 200 years and found that the number of mucilage outbreaks increased almost exponentially in the last 20 years. The increasing frequency of mucilage outbreaks is closely associated with the temperature anomalies. Conclusions/Significance: We conclude that the spreading of mucilage in the Mediterranean Sea is linked to climate-driven sea surface warming. The mucilage can act as a controlling factor of microbial diversity across wide oceanic regions and could have the potential to act as a carrier of specific microorganisms, thereby increasing the spread of pathogenic bacteria

    The Mediterranean Sea Regime Shift at the End of the 1980s, and Intriguing Parallelisms with Other European Basins

    Get PDF
    Background: Regime shifts are abrupt changes encompassing a multitude of physical properties and ecosystem variables, which lead to new regime conditions. Recent investigations focus on the changes in ecosystem diversity and functioning associated to such shifts. Of particular interest, because of the implication on climate drivers, are shifts that occur synchronously in separated basins. Principal Findings: In this work we analyze and review long-term records of Mediterranean ecological and hydro-climate variables and find that all point to a synchronous change in the late 1980s. A quantitative synthesis of the literature (including observed oceanic data, models and satellite analyses) shows that these years mark a major change in Mediterranean hydrographic properties, surface circulation, and deep water convection (the Eastern Mediterranean Transient). We provide novel analyses that link local, regional and basin scale hydrological properties with two major indicators of large scale climate, the North Atlantic Oscillation index and the Northern Hemisphere Temperature index, suggesting that the Mediterranean shift is part of a large scale change in the Northern Hemisphere. We provide a simplified scheme of the different effects of climate vs. temperature on pelagic ecosystems. Conclusions: Our results show that the Mediterranean Sea underwent a major change at the end of the 1980s that encompassed atmospheric, hydrological, and ecological systems, for which it can be considered a regime shift. We further provide evidence that the local hydrography is linked to the larger scale, northern hemisphere climate. These results suggest that the shifts that affected the North, Baltic, Black and Mediterranean (this work) Seas at the end of the 1980s, that have been so far only partly associated, are likely linked as part a northern hemisphere change. These findings bear wide implications for the development of climate change scenarios, as synchronous shifts may provide the key for distinguishing local (i.e., basin) anthropogenic drivers, such as eutrophication or fishing, from larger scale (hemispheric) climate drivers

    A MSFD complementary approach for the assessment of pressures, knowledge and data gaps in Southern European Seas : the PERSEUS experience

    Get PDF
    PERSEUS project aims to identify the most relevant pressures exerted on the ecosystems of the Southern European Seas (SES), highlighting knowledge and data gaps that endanger the achievement of SES Good Environmental Status (GES) as mandated by the Marine Strategy Framework Directive (MSFD). A complementary approach has been adopted, by a meta-analysis of existing literature on pressure/impact/knowledge gaps summarized in tables related to the MSFD descriptors, discriminating open waters from coastal areas. A comparative assessment of the Initial Assessments (IAs) for five SES countries has been also independently performed. The comparison between meta-analysis results and IAs shows similarities for coastal areas only. Major knowledge gaps have been detected for the biodiversity, marine food web, marine litter and underwater noise descriptors. The meta-analysis also allowed the identification of additional research themes targeting research topics that are requested to the achievement of GES. 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license.peer-reviewe

    Disentangling the effect of viruses and nanoflagellates on prokaryotes in bathypelagic waters of the Mediterranean Sea

    No full text
    ABSTRACT: Bathypelagic ecosystems depend on prokaryotic heterotrophic biomass fuelled by vertical particulate organic matter (POM) fluxes, but very little information is available on the interactions among viruses, prokaryotes and nanoflagellates in deep waters. We simultaneously investigated the relative importance of the viral and heterotrophic nanoflagellate (HNF) grazing-induced prokaryotic mortality in bathypelagic waters by means of dilution experiments performed on samples collected at 1500 m depth from the Atlantic Ocean to the Eastern Mediterranean Sea. Prokaryotic abundance (range: 1.4 to 8.9 7 104 cells ml\u20131), although different from one station to another, was on average not significantly different among biogeographic regions. The potential predators of prokaryotes (viruses, HNF and microzooplankton) followed a similar spatial pattern. Viruses were responsible for an important fraction of prokaryotic mortality (on average 13.4% d\u20131). Dilution experiments carried out to estimate the potential predation of HNF suggested a high effect on prokaryotic abundance. However, since the latter experiments also include the effect of viruses on prokaryotes, when this factor was disentangled from the overall mortality, the potential rates of HNF predation on prokaryotes (on average 49.5%) were ca. 4 times higher than the effect due to viral infections. Conversely to patterns of distribution, the relative importance of virus-mediated mortality vs. HNF predation changed significantly among different regions. Results should be treated with caution due to the intrinsic difficulty in reproducing experimentally natural deep-sea conditions, but they permit disentangling of the relative effect of viruses and HNF on prokaryotes and compare the potential predatory control in different biogeographic regions
    corecore