569 research outputs found

    The Mw = 6.3, November 21, 2004, Les Saintes earthquake (Guadeloupe): Tectonic setting, slip model and static stress changes,

    Get PDF
    International audienceOn November 21, 2004, a magnitude 6.3 earthquake occurred offshore, 10 km south of Les Saintes archipelago in Guadeloupe (French West Indies). There were more than 30000 aftershocks recorded in the following two years, most of them at shallow depth near the islands of the archipelago. The main shock and its main aftershock of February 14, 2005 (Mw = 5.8) ruptured a NE-dipping normal fault (Roseau fault), mapped and identified as active from high-resolution bathymetric data a few years before. This fault belongs to an arc-parallel en echelon fault system that follows the inner edge of the northern part of the Lesser Antilles arc, accommodating the sinistral component of oblique convergence between the North American and Caribbean plates. The distribution of aftershocks and damage (destruction and landslides) are consistent with the main fault plane location and attitude. The slip model of the main shock, obtained by inverting jointly global broadband and local strong motion records, is characterized by two main slip zones located 5 to 10 km to the SE and NW of the hypocenter. The main shock is shown to have increased the Coulomb stress at the tips of the ruptured plane by more than 4 bars where most of the aftershocks occurred, implying that failures on fault system were mainly promoted by static stress changes. The earthquake also had an effect on volcanic activity since the Boiling Lake in Dominica drained twice, probably as a result of the extensional strain induced by the earthquake and its main aftershock

    Competition between electron pairing and phase coherence in superconducting interfaces

    Get PDF
    In LaAlO3/SrTiO3 heterostructures, a gate tunable superconducting electron gas is confined in a quantum well at the interface between two insulating oxides. Remarkably, the gas coexists with both magnetism and strong Rashba spin–orbit coupling. However, both the origin of superconductivity and the nature of the transition to the normal state over the whole doping range remain elusive. Here we use resonant microwave transport to extract the superfluid stiffness and the superconducting gap energy of the LaAlO3/SrTiO3 interface as a function of carrier density. We show that the superconducting phase diagram of this system is controlled by the competition between electron pairing and phase coherence. The analysis of the superfluid density reveals that only a very small fraction of the electrons condenses into the superconducting state. We propose that this corresponds to the weak filling of high- energy dxz/dyz bands in the quantum well, more apt to host superconductivity

    Structural recovery of ion implanted ZnO nanowires

    Get PDF
    5 pagesInternational audienceIon implantation is an interesting method to dope semiconducting materials such as zinc oxide provided that the implantation-induced defects can be subsequently removed. Nitrogen implantation followed by anneals under O2 were carried out on zinc oxide nanowires in the same conditions as in a previous study on bulk ZnO [J. Appl.Phys. 109, 023513 (2011)], allowing a direct comparison of the defect recovery mechanisms. Transmission electron microscopy and cathodoluminescence were carried out to assess the effects of nitrogen implantation and of subsequent anneals on the structural and optical properties of ZnO nanowires. Defect recovery is shown to be more effective in nanowires compared with bulk material due to the proximity of free surfaces. Nevertheless, the optical emission of implanted and annealed nanowires deteriorated compared to as-grown nanowires, as also observed for unimplanted and annealed nanowires. This is tentatively attributed to the dissociation of excitons in the space charge region induced by O2 adsorption on the nanowire surface

    Self-assembled zinc blende GaN quantum dots grown

    Get PDF
    Zinc blende ~ZB! GaN quantum dots have been grown by plasma-assisted molecular-beam epitaxy on AlN buffer layers using 3C-SiC~001! substrates. The two- to three-dimensional growth mode transition is studied by following the evolution of the reflection high-energy electron diffraction pattern. ZB GaN island layers are further examined by atomic force microscopy and transmission electron microscopy, extracting a mean island height of 1.6 nm and a mean diameter of 13 nm at a density of 1.331011 cm22. Embedded ZB GaN quantum dots show strong ultraviolet photoluminescence without any thermal quenching up to room temperature.SFERERegion Rhône-AlpesConsejo Nacional de Ciencia y Tecnologí

    A stochastic network with mobile users in heavy traffic

    Full text link
    We consider a stochastic network with mobile users in a heavy-traffic regime. We derive the scaling limit of the multi-dimensional queue length process and prove a form of spatial state space collapse. The proof exploits a recent result by Lambert and Simatos which provides a general principle to establish scaling limits of regenerative processes based on the convergence of their excursions. We also prove weak convergence of the sequences of stationary joint queue length distributions and stationary sojourn times.Comment: Final version accepted for publication in Queueing Systems, Theory and Application

    On the flow-level stability of data networks without congestion control: the case of linear networks and upstream trees

    Full text link
    In this paper, flow models of networks without congestion control are considered. Users generate data transfers according to some Poisson processes and transmit corresponding packet at a fixed rate equal to their access rate until the entire document is received at the destination; some erasure codes are used to make the transmission robust to packet losses. We study the stability of the stochastic process representing the number of active flows in two particular cases: linear networks and upstream trees. For the case of linear networks, we notably use fluid limits and an interesting phenomenon of "time scale separation" occurs. Bounds on the stability region of linear networks are given. For the case of upstream trees, underlying monotonic properties are used. Finally, the asymptotic stability of those processes is analyzed when the access rate of the users decreases to 0. An appropriate scaling is introduced and used to prove that the stability region of those networks is asymptotically maximized
    corecore