7,324 research outputs found

    The X-ray Spectra of Black Hole X-ray Novae in Quiescence as Measured by Chandra

    Get PDF
    We present Chandra observations of black hole X-ray novae V404 Cyg, A0620-00, GRO J1655-40 and XTE J1550-564 in quiescence. Their quiescent spectra can be well fitted by a power-law model with slope α∼2\alpha \sim 2. While a coronal (Raymond-Smith) model is also a statistically acceptable representation of the spectra, the best fit temperatures of these models is ∼5\sim 5 times higher than that seen in active stellar coronae. These four spectra of quiescent X-ray novae are all consistent with that expected for accretion via an advection-dominated accretion flow (ADAF) and inconsistent with that expected from a stellar corona. This evidence for continued accretion in quiescence further strengthens the case for the existence of event horizons in black holes. Both A0620-00 and GRO J1655-40 were fainter than in previous observations, while V404 Cyg was more luminous and varied by a factor of 2 in a few ksec. A reanalysis of the X-ray data for XTE J1550-564 shows that (like V404 Cyg and A0620-00) its luminosity exceeds the maximum prediction of the coronal model by a large factor. The 0.3-7 keV luminosity of the four sources studied ranges from ∼1030−1033\sim 10^{30}-10^{33} erg/s.Comment: 9 pages, 6 figures, accepted for publication in Ap

    Scaling Properties of Random Walks on Small-World Networks

    Full text link
    Using both numerical simulations and scaling arguments, we study the behavior of a random walker on a one-dimensional small-world network. For the properties we study, we find that the random walk obeys a characteristic scaling form. These properties include the average number of distinct sites visited by the random walker, the mean-square displacement of the walker, and the distribution of first-return times. The scaling form has three characteristic time regimes. At short times, the walker does not see the small-world shortcuts and effectively probes an ordinary Euclidean network in dd-dimensions. At intermediate times, the properties of the walker shows scaling behavior characteristic of an infinite small-world network. Finally, at long times, the finite size of the network becomes important, and many of the properties of the walker saturate. We propose general analytical forms for the scaling properties in all three regimes, and show that these analytical forms are consistent with our numerical simulations.Comment: 7 pages, 8 figures, two-column format. Submitted to PR

    Efficient Behavior of Small-World Networks

    Full text link
    We introduce the concept of efficiency of a network, measuring how efficiently it exchanges information. By using this simple measure small-world networks are seen as systems that are both globally and locally efficient. This allows to give a clear physical meaning to the concept of small-world, and also to perform a precise quantitative a nalysis of both weighted and unweighted networks. We study neural networks and man-made communication and transportation systems and we show that the underlying general principle of their construction is in fact a small-world principle of high efficiency.Comment: 1 figure, 2 tables. Revised version. Accepted for publication in Phys. Rev. Let

    Correlation effects in a simple model of small-world network

    Full text link
    We analyze the effect of correlations in a simple model of small world network by obtaining exact analytical expressions for the distribution of shortest paths in the network. We enter correlations into a simple model with a distinguished site, by taking the random connections to this site from an Ising distribution. Our method shows how the transfer matrix technique can be used in the new context of small world networks.Comment: 10 pages, 3 figure

    Twenty-year advanced DInSAR analysis of severe land subsidence: The Alto Guadalentin Basin (Spain) case study

    Get PDF
    A twenty-year period of severe land subsidence evolution in the Alto Guadalentin Basin (southeast Spain) is monitored using multi-sensor SAR images, processed by advanced differential interferometric synthetic aperture radar (DInSAR) techniques. The SAR images used in this study consist of four datasets acquired by ERS-1/2, ENVISAT, ALOS and COSMO-SkyMed satellites between 1992 and 2012. The integration of ground surface displacement maps retrieved for different time periods allows us to quantify up to 2.50 m of cumulated displacements that occurred between 1992 and 2012 in the Alto Guadalentin Basin. DInSAR results were locally compared with global positioning system (GPS) data available for two continuous stations located in the study area, demonstrating the high consistency of local vertical motion measurements between the two different surveying techniques. An average absolute error of 4.6 +/- 4 mm for the ALOS data and of 4.8 +/- 3.5 mm for the COSMO-SkyMed data confirmed the reliability of the analysis. The spatial analysis of DInSAR ground surface displacement reveals a direct correlation with the thickness of the compressible alluvial deposits. Detected ground subsidence in the past 20 years is most likely a consequence of a 100-200 m groundwater level drop that has persisted since the 1970s due to the overexploitation of the Alto Guadalentin aquifer system. The negative gradient of the pore pressure is responsible for the extremely slow consolidation of a very thick (> 100 m) layer of fine-grained silt and clay layers with low vertical hydraulic permeability (approximately 50 mm/h) wherein the maximum settlement has still not been reached. (C) 2015 Published by Elsevier B.V

    Scale-free brain functional networks

    Get PDF
    Functional magnetic resonance imaging (fMRI) is used to extract {\em functional networks} connecting correlated human brain sites. Analysis of the resulting networks in different tasks shows that: (a) the distribution of functional connections, and the probability of finding a link vs. distance are both scale-free, (b) the characteristic path length is small and comparable with those of equivalent random networks, and (c) the clustering coefficient is orders of magnitude larger than those of equivalent random networks. All these properties, typical of scale-free small world networks, reflect important functional information about brain states.Comment: 4 pages, 5 figures, 2 table

    Pancrustacean evolution illuminated by taxon-rich genomic-scale data sets with an expanded remipede sampling

    Full text link
    The relationships of crustaceans and hexapods (Pancrustacea) have been much discussed and partially elucidated following the emergence of phylogenomic data sets. However, major uncertainties still remain regarding the position of iconic taxa such as Branchiopoda, Copepoda, Remipedia, and Cephalocarida, and the sister group relationship of hexapods. We assembled the most taxon-rich phylogenomic pancrustacean data set to date and analyzed it using a variety of methodological approaches. We prioritized low levels of missing data and found that some clades were consistently recovered independently of the analytical approach used. These include, for example, Oligostraca and Altocrustacea. Substantial support was also found for Allotriocarida, with Remipedia as the sister of Hexapoda (i.e., Labiocarida), and Branchiopoda as the sister of Labiocarida, a clade that we name Athalassocarida (='nonmarine shrimps'). Within Allotriocarida, Cephalocarida was found as the sister of Athalassocarida. Finally, moderate support was found for Hexanauplia (Copepoda as sister to Thecostraca) in alliance with Malacostraca. Mapping key crustacean tagmosis patterns and developmental characters across the revised phylogeny suggests that the ancestral pancrustacean was relatively short-bodied, with extreme body elongation and anamorphic development emerging later in pancrustacean evolution

    Dissimilar Impact of a Mediterranean Diet and Physical Activity on Anthropometric Indices: A Cross-Sectional Study from the ILERVAS Project

    Get PDF
    There is a close relationship between lifestyle behaviors and excess adiposity. Although body mass index (BMI) is the most used approach to estimate excess weight, other anthropometric indices have been developed to measure total body and abdominal adiposity. However, little is known about the impact of physical activity and adherence to a Mediterranean diet on these indices. Here we report the results of a cross-sectional study with 6672 middle-aged subjects with low to moderate cardiovascular risk from the Ilerda Vascular (ILERVAS) project. The participants' adherence to physical activity (International Physical Activity Questionnaire short form) and MedDiet (Mediterranean Diet Adherence Screener) was evaluated. Measures of total adiposity (BMI, Clínica Universidad de Navarra-Body Adiposity Estimator (CUN-BAE), and Deurenberg's formula), central adiposity (waist and neck circumferences, conicity index, waist to height ratio, Bonora's equation, A body adiposity index, and body roundness index), and lean body mass (Hume formula) were assessed. Irrespective of sex, lower indices of physical activity were associated with higher values of total body fat and central adiposity. This result was constant regardless of the indices used to estimate adiposity. However, the association between MedDiet and obesity indices was much less marked and more dependent on sex than that observed for physical activity. Lean body mass was influenced by neither physical activity nor MedDiet adherence. No joint effect between physical activity and MedDiet to lower estimated total or central adiposity indices was shown. In conclusion, physical activity is related to lower obesity indices in a large cohort of middle-aged subjects. MedDiet showed a slight impact on estimated anthropometric indices, with no joint effect when considering both lifestyle variables
    • …
    corecore