255 research outputs found

    Locally vascularized pelvic accessory spleen

    Get PDF
    Il polisplenismo e la milza accessoria sono anomalie congenite generalmente asintomatiche. Riportiamo un raro caso di polisplenismo con milza pelvica ectopica in una donna bianca di 67 anni. Nella pelvi di sinistra all’ecografia transvaginale è stata ritrovata una massa soffice, ben definita, omogenea e vascolarizzata. La paziente è stata quindi sottoposta a valutazione con RM e TC addominale con contrasto: sono state ottenute immagini con aspetto parenchimale simile alla milza. E’ stata eseguita una scintigrafia addominale con albumina umana colloidale radiomarcata con tecnezio sulla regione pelvica con scansioni planari e SPECT. I risultati hanno mostrato la presenza di un’area di captazione del radiofarmaco nella pelvi, mentre la milza è stata normalmente visualizzata. Questi ritrovamenti hanno confermato la presenza di una milza accessoria con una arteria originante dall’aorta ed una vena che si anastomizzava con la vena mesenterica superiore. Alla nostra conoscenza, nella letteratura, esiste solo un caso di vera milza ectopica localmente vascolarizzata nella pelvi.Polysplenism and accessory spleen are congenital, usually asymptomatic anomalies. A rare case of polysplenism with ectopic spleen in pelvis of a 67-year-old, Caucasian female is reported here. A transvaginal ultrasound found a soft well-defined homogeneous and vascularized mass in the left pelvis. Patient underwent MRI evaluation and contrast-CT abdominal scan: images with parenchymal aspect, similar to spleen were obtained. Abdominal scintigraphy with 99mTc-albumin nanocolloid was performed and pelvic region was studied with planar scans and SPECT. The results showed the presence of an uptake area of the radiopharmaceutical in the pelvis, while the spleen was normally visualized. These findings confirmed the presence of an accessory spleen with an artery originated from the aorta and a vein that joined with the superior mesenteric vein. To our knowledge, in the literature, there is just only one case of a true ectopic, locally vascularized spleen in the pelvis

    Is contrast-enhanced US alternative to spiral CT in the assessment of treatment outcome of radiofrequency ablation in hepatocellular carcinoma?

    Get PDF
    Purpose: The present study was conducted to assess the efficacy of contrast-enhanced ultrasound with low mechanical index in evaluating the response of percutaneous radiofrequency ablation treatment of hepatocellular carcinoma by comparing it with 4-row spiral computed tomography. Materials and Methods: 100 consecutive patients (65 men and 35 women; age range: 62 – 76 years) with solitary hepatocellular carcinomas (mean lesion diameter: 3.7cm± 1.1cm SD) underwent internally cooled radiofrequency ablation. Therapeutic response was evaluated at one month after the treatment with triple-phasic contrast-enhanced spiral CT and low-mechanical index contrast-enhanced ultrasound following bolus injection of 2.4 ml of Sonovue (Bracco, Milan). 60 out of 100 patients were followed up for another 3 months. Contrast-enhanced sonographic studies were reviewed by two blinded radiologists in consensus. Sensitivity, specificity, NPV and PPV of contrast-enhanced ultrasound examination were determined. Results: After treatment, contrast-enhanced ultrasound identified persistent signal enhancement in 24 patients (24%), whereas no intratumoral enhancement was detected in the remaining 76 patients (76%). Using CT imaging as gold standard, the sensitivity, specificity, NPV, and PPV of contrast enhanced ultrasound were 92.3% (95% CI = 75.9 – 97.9%), 100% (95% CI = 95.2 – 100%), 97.4% (95% CI = 91.1 – 99.3%), and 100% (95% CI = 86.2 – 100%). Conclusion: Contrast-enhanced ultrasound with low mechanical index using Sonovue is a feasible tool in evaluating the response of hepatocellular carcinoma to radiofrequency ablation. Accuracy is comparable to 4-row spiral CT

    Effect of the Pulsed Electric Field Treatment on Physical, Chemical and Structural Changes of Vacuum Impregnated Apple Tissue in Aloe Vera Juices

    Get PDF
    Vacuum impregnation (VI) stands as a diffusion-driven food processing method that has found recent application within the food industry, particularly for the cold formulation of fortified food products. Pulsed electric field (PEF) treatment can affect the food structure, influencing therefore the mass transfer phenomena during the further processing. Thus, the study aimed at investigating the effect of PEF treatment on selected physicochemical properties of vacuum-impregnated apples. Apple slices were vacuum impregnated with aloe vera juice solution with or PEF treatment at different intensities (125, 212.5 or 300 V/cm). The PEF was applied as a pretreatment—applied before the VI process as well as posttreatment—applied after the VI process. The VI process with aloe vera juice resulted in a sample weight increase of over 24% as well as structural changes, partial cell viability loss and color alteration. In addition, the decrease of bioactive compounds was observed, while antioxidant activity remained at a similar level as in raw material. PEF treatment adversely affected vacuum impregnation efficiency, causing microstructural changes and cell viability loss. Additionally, chemical composition modifications were evident through thermogravimetric analysis (TGA) and Fourier Infrared Spectroscopy (FTIR) analyses. Tissue hardness decreased significantly due to structural damage and caused high leakage from plant tissue, which resulted in hindering saturation with aloe vera juice during the VI process. Additionally, reduced bioactive substance content after PEF treatment was observed and the VI process did not restore apple samples of the bioactive compounds from aloe vera juice

    Imaging integrato nelle patologie flogistiche renali

    Get PDF
    Abstract non disponibil

    Estrategias de manejo químico de la rabia del garbanzo (Ascochyta rabiei)

    Get PDF
    El manejo químico es una de las principales estrategias para el manejo de la rabia del garbanzo, causada por el hongo Ascochyta rabiei, la enfermedad más agresiva del cultivo del garbanzo (Cicer arietinum L.) a nivel mundial. Se evaluó la capacidad de control de 20 fungicidasaplicados en dos momentos de intervención: i) preventiva (con valores de incidencia menores al 1%), aplicando los fungicidas y repitiendo los mismos a los a los 21 días; y ii) curativa (realizando aplicaciones simples al registrar 100% de incidencia). Se aplicó con mochila experimental, en diseño completamente aleatorizado, de micro parcelas con cuatro repeticiones. Se evalúo: i) incidencia, ii) severidad (como porcentaje visual de área de la planta afectada), iii) control (%), iv) rendimiento (kg/ha) y v) calibre. Los resultados fueron analizados a través de análisis de la varianza y test de comparación de medias. Todos los fungicidas probados presentaron control sobre rabia. Las diferencias tanto en incidencia como en severidad fueron estadísticamente significativas. Los tratamientos preventivos superaron el 85% de control en todos los casos, los tratamientoscurativos lograron un control promedio del 67%. Todos los tratamientos presentaron respuestas positivas en rendimiento y diferencias estadísticamente significativas, las mismas fueron desde los 274,2 kg/ha a 1552,7 kg/ha. Los tratamientos más sanos presentaronmayores porcentajes de calibres mayores (9 y 8) y menor cantidad de clasificación bajo zaranda, todos los tratamientos se diferenciaron estadísticamente. Se logró generar información del accionar de diferentes fungicidas frente a rabia del garbanzo, así como de su respuesta en rendimiento y calidad de grano

    The Mediterranean Forecasting System - Part 1: Evolution and performance

    Get PDF
    The Mediterranean Forecasting System produces operational analyses and reanalyses and 10 d forecasts for many essential ocean variables (EOVs), from currents, temperature, salinity, and sea level to wind waves and pelagic biogeochemistry. The products are available at a horizontal resolution of 1/24 (approximately 4 km) and with 141 unevenly spaced vertical levels. The core of the Mediterranean Forecasting System is constituted by the physical (PHY), the biogeochemical (BIO), and the wave (WAV) components, consisting of both numerical models and data assimilation modules. The three components together constitute the so-called Mediterranean Monitoring and Forecasting Center (Med-MFC) of the Copernicus Marine Service. Daily 10 d forecasts and analyses are produced by the PHY, BIO, and WAV operational systems, while reanalyses are produced every ∼ 3 years for the past 30 years and are extended (yearly). The modelling systems, their coupling strategy, and their evolutions are illustrated in detail. For the first time, the quality of the products is documented in terms of skill metrics evaluated over a common 3-year period (2018-2020), giving the first complete assessment of uncertainties for all the Mediterranean environmental variable analyses. © 2023 Giovanni Coppini et al

    Challenges for Sustained Observing and Forecasting Systems in the Mediterranean Sea

    Get PDF
    The Mediterranean community represented in this paper is the result of more than 30 years of EU and nationally funded coordination, which has led to key contributions in science concepts and operational initiatives. Together with the establishment of operational services, the community has coordinated with universities, research centers, research infrastructures and private companies to implement advanced multi-platform and integrated observing and forecasting systems that facilitate the advancement of operational services, scientific achievements and mission-oriented innovation. Thus, the community can respond to societal challenges and stakeholders needs, developing a variety of fit-for-purpose services such as the Copernicus Marine Service. The combination of state-of-the-art observations and forecasting provides new opportunities for downstream services in response to the needs of the heavily populated Mediterranean coastal areas and to climate change. The challenge over the next decade is to sustain ocean observations within the research community, to monitor the variability at small scales, e.g., the mesoscale/submesoscale, to resolve the sub-basin/seasonal and inter-annual variability in the circulation, and thus establish the decadal variability, understand and correct the model-associated biases and to enhance model-data integration and ensemble forecasting for uncertainty estimation. Better knowledge and understanding of the level of Mediterranean variability will enable a subsequent evaluation of the impacts and mitigation of the effect of human activities and climate change on the biodiversity and the ecosystem, which will support environmental assessments and decisions. Further challenges include extending the science-based added-value products into societal relevant downstream services and engaging with communities to build initiatives that will contribute to the 2030 Agenda and more specifically to SDG14 and the UN's Decade of Ocean Science for sustainable development, by this contributing to bridge the science-policy gap. The Mediterranean observing and forecasting capacity was built on the basis of community best practices in monitoring and modeling, and can serve as a basis for the development of an integrated global ocean observing system

    Challenges for Sustained Observing and Forecasting Systems in the Mediterranean Sea

    Get PDF
    The Mediterranean community represented in this paper is the result of more than 30 years of EU and nationally funded coordination, which has led to key contributions in science concepts and operational initiatives. Together with the establishment of operational services, the community has coordinated with universities, research centers, research infrastructures and private companies to implement advanced multi-platform and integrated observing and forecasting systems that facilitate the advancement of operational services, scientific achievements and mission-oriented innovation. Thus, the community can respond to societal challenges and stakeholders needs, developing a variety of fit-for-purpose services such as the Copernicus Marine Service. The combination of state-of-the-art observations and forecasting provides new opportunities for downstream services in response to the needs of the heavily populated Mediterranean coastal areas and to climate change. The challenge over the next decade is to sustain ocean observations within the research community, to monitor the variability at small scales, e.g., the mesoscale/submesoscale, to resolve the sub-basin/seasonal and inter-annual variability in the circulation, and thus establish the decadal variability, understand and correct the model-associated biases and to enhance model-data integration and ensemble forecasting for uncertainty estimation. Better knowledge and understanding of the level of Mediterranean variability will enable a subsequent evaluation of the impacts and mitigation of the effect of human activities and climate change on the biodiversity and the ecosystem, which will support environmental assessments and decisions. Further challenges include extending the science-based added-value products into societal relevant downstream services and engaging with communities to build initiatives that will contribute to the 2030 Agenda and more specifically to SDG14 and the UN's Decade of Ocean Science for sustainable development, by this contributing to bridge the science-policy gap. The Mediterranean observing and forecasting capacity was built on the basis of community best practices in monitoring and modeling, and can serve as a basis for the development of an integrated global ocean observing system

    Documenting the Recovery of Vascular Services in European Centres Following the Initial COVID-19 Pandemic Peak: Results from a Multicentre Collaborative Study

    Get PDF
    Objective: To document the recovery of vascular services in Europe following the first COVID-19 pandemic peak. Methods: An online structured vascular service survey with repeated data entry between 23 March and 9 August 2020 was carried out. Unit level data were collected using repeated questionnaires addressing modifications to vascular services during the first peak (March – May 2020, “period 1”), and then again between May and June (“period 2”) and June and July 2020 (“period 3”). The duration of each period was similar. From 2 June, as reductions in cases began to be reported, centres were first asked if they were in a region still affected by rising cases, or if they had passed the peak of the first wave. These centres were asked additional questions about adaptations made to their standard pathways to permit elective surgery to resume. Results: The impact of the pandemic continued to be felt well after countries’ first peak was thought to have passed in 2020. Aneurysm screening had not returned to normal in 21.7% of centres. Carotid surgery was still offered on a case by case basis in 33.8% of centres, and only 52.9% of centres had returned to their normal aneurysm threshold for surgery. Half of centres (49.4%) believed their management of lower limb ischaemia continued to be negatively affected by the pandemic. Reduced operating theatre capacity continued in 45.5% of centres. Twenty per cent of responding centres documented a backlog of at least 20 aortic repairs. At least one negative swab and 14 days of isolation were the most common strategies used for permitting safe elective surgery to recommence. Conclusion: Centres reported a broad return of services approaching pre-pandemic “normal” by July 2020. Many introduced protocols to manage peri-operative COVID-19 risk. Backlogs in cases were reported for all major vascular surgeries
    corecore