6,092 research outputs found

    Quantum size effects on the perpendicular upper critical field in ultra-thin lead films

    Full text link
    We report the thickness-dependent (in terms of atomic layers) oscillation behavior of the perpendicular upper critical field Hc2H_{c2\perp} in the ultra-thin lead films at the reduced temperature (t=T/Tct=T/T_c). Distinct oscillations of the normal-state resistivity as a function of film thickness have also been observed. Compared with the TcT_c oscillation, the Hc2H_{c2\perp} shows a considerable large oscillation amplitude and a π\pi phase shift. The oscillatory mean free path caused by quantum size effect plays a role in Hc2H_{c2\perp} oscillation.Comment: 4 pages, 4 figure

    QED Renormalization Given in A Mass-Dependent Subtraction and The Renormalization Group Approach

    Full text link
    The QED renormalization is restudied by using a mass-dependent subtraction which is performed at a time-like renormalization point. The subtraction exactly respects necessary physical and mathematical requirements such as the gauge symmetry, the Lorentz- invariance and the mathematical convergence. Therefore, the renormalized results derived in the subtraction scheme are faithful and have no ambiguity. Especially, it is proved that the solution of the renormalization group equation satisfied by a renormalized wave function, propagator or vertex can be fixed by applying the renormalization boundary condition and, thus, an exact S-matrix element can be expressed in the form as written in the tree diagram approximation provided that the coupling constant and the fermion mass are replaced by their effective ones. In the one-loop approximation, the effective coupling constant and the effective fermion mass obtained by solving their renormalization group equations are given in rigorous and explicit expressions which are suitable in the whole range of distance and exhibit physically reasonable asymptotic behaviors.Comment: 29 pages, 4 figure

    Controlling Excitations Inversion of a Cooper Pair Box Interacting with a Nanomechanical Resonator

    Full text link
    We investigate the action of time dependent detunings upon the excitation inversion of a Cooper pair box interacting with a nanomechanical resonator. The method employs the Jaynes-Cummings model with damping, assuming different decay rates of the Cooper pair box and various fixed and t-dependent detunings. It is shown that while the presence of damping plus constant detunings destroy the collapse/revival effects, convenient choices of time dependent detunings allow one to reconstruct such events in a perfect way. It is also shown that the mean excitation of the nanomechanical resonator is more robust against damping of the Cooper pair box for convenient values of t-dependent detunings.Comment: 11 pages, 5 figure

    Optical Monitoring of BL Lacertae Object OJ 287: a 40-Day Period?

    Get PDF
    We present the results of our optical monitoring of the BL Lacertae object OJ 287 during the first half of 2005. The source did not show large-amplitude variations during this period and was in a relatively quiescent state. A possible period of 40 days was derived from its light curves in three BATC wavebands. A bluer-when-brighter chromatism was discovered, which is different from the extremely stable color during the outburst in 1994--96. The different color behaviors imply different variation mechanisms in the two states. We then re-visited the optical data on OJ 287 from the OJ-94 project and found as well a probable period of 40 days in its optical variability during the late-1994 outburst. The results suggest that two components contribute to the variability of OJ 287 during its outburst state. The first component is the normal {\sl blazar} variation. This component has an amplitude similar to that of the quiescent state and also may share a similar periodicity. The second component can be taken as a `low-frequency modulation' to the first component. It may be induced by the interaction of the assumed binary black holes in the center of this object. The 40-day period may be related to the helical structure of the magnetic field at the base of the jet, or to the orbital motion close to the central primary black hole.Comment: 31 pages, 8 figures, accepted by A

    The Resolved Stellar Halo of NGC 253

    Full text link
    We have obtained Magellan/IMACS and HST/ACS imaging data that resolve red giant branch stars in the stellar halo of the starburst galaxy NGC 253. The HST data cover a small area, and allow us to accurately interpret the ground-based data, which cover 30% of the halo to a distance of 30 kpc, allowing us to make detailed quantitative measurements of the global properties and structure of a stellar halo outside of the Local Group. The geometry of the halo is significantly flattened in the same sense as the disk, with a projected axis ratio of b/a ~ 0.35 +/- 0.1. The total stellar mass of the halo is estimated to be M_halo ~ 2.5 +/- 1.5 x 10^9 M_sun, or 6% of the total stellar mass of the galaxy, and has a projected radial dependence that follows a power law of index -2.8 +/- 0.6, corresponding to a three-dimensional power law index of ~ -4. The total luminosity and profile shape that we measure for NGC 253 are somewhat larger and steeper than the equivalent values for the Milky Way and M31, but are well within the scatter of model predictions for the properties of stellar halos built up in a cosmological context. Structure within the halo is seen at a variety of scales: there is small kpc-scale density variation and a large shelf-like feature near the middle of the field. The techniques that have been developed will be essential for quantitatively comparing our upcoming larger sample of observed stellar halos to models of halo formation.Comment: ApJ, in press. Version with full resolution figures available at http://www.astro.lsa.umich.edu/~jbailin/papers/bailin_n253halo.pd

    The Structure of the Sagittarius Stellar Stream as Traced by Blue Horizontal Branch Stars

    Get PDF
    We use a sample of blue horizontal branch (BHB) stars from the Sloan Digital Sky Survey Data Release 7 to explore the structure of the tidal tails from the Sagittarius Dwarf Galaxy. We use a method yielding BHB star candidates with up to ~70% purity from photometry alone. The resulting sample has a distance precision of roughly 5% and can probe distances in excess of 100 kpc. Using this sample, we identify a possible extension to the trailing arm at distances of 60-80 kpc from the Sun with an estimated significance of at least 3.8 sigma. Current models predict that a distant `returning' segment of the debris stream should exist, but place it substantially closer to the Sun where no debris is observed in our data. Exploiting the distance precision of our tracers, we estimate the mean line-of-sight thickness of the leading arm to be ~3 kpc, and show that the two `bifurcated' branches of the debris stream differ by only 1-2 kpc in distance. With a spectroscopic very pure BHB star subsample, we estimate the velocity dispersion in the leading arm, 37 km s^-1, which is in reasonable agreement with models of Sgr disruption. We finally present a sample of high-probability Sgr BHB stars in the leading arm of Sgr, selected to have distances and velocities consistent with Sgr membership, to allow further study.Comment: Astrophysical Journal, in press. 17 pages, 15 figure

    Quantifying Kinematic Substructure in the Milky Way's Stellar Halo

    Get PDF
    We present and analyze the positions, distances, and radial velocities for over 4000 blue horizontal-branch (BHB) stars in the Milky Way's halo, drawn from SDSS DR8. We search for position-velocity substructure in these data, a signature of the hierarchical assembly of the stellar halo. Using a cumulative "close pair distribution" (CPD) as a statistic in the 4-dimensional space of sky position, distance, and velocity, we quantify the presence of position-velocity substructure at high statistical significance among the BHB stars: pairs of BHB stars that are close in position on the sky tend to have more similar distances and radial velocities compared to a random sampling of these overall distributions. We make analogous mock-observations of 11 numerical halo formation simulations, in which the stellar halo is entirely composed of disrupted satellite debris, and find a level of substructure comparable to that seen in the actually observed BHB star sample. This result quantitatively confirms the hierarchical build-up of the stellar halo through a signature in phase (position-velocity) space. In detail, the structure present in the BHB stars is somewhat less prominent than that seen in most simulated halos, quite possibly because BHB stars represent an older sub-population. BHB stars located beyond 20 kpc from the Galactic center exhibit stronger substructure than at rgc<20\rm r_{gc} < 20 kpc.Comment: 29 page, 10 figures, 1 table; accepted by APJ; for related article by another group see arXiv:1011.192

    Bihamiltonian Cohomologies and Integrable Hierarchies I: A Special Case

    Full text link
    We present some general results on properties of the bihamiltonian cohomologies associated to bihamiltonian structures of hydrodynamic type, and compute the third cohomology for the bihamiltonian structure of the dispersionless KdV hierarchy. The result of the computation enables us to prove the existence of bihamiltonian deformations of the dispersionless KdV hierarchy starting from any of its infinitesimal deformations.Comment: 43 pages. V2: the accepted version, to appear in Comm. Math. Phy

    Evidence for phase formation in potassium intercalated 1,2;8,9-dibenzopentacene

    Full text link
    We have prepared potassium intercalated 1,2;8,9-dibenzopentacene films under vacuum conditions. The evolution of the electronic excitation spectra upon potassium addition as measured using electron energy-loss spectroscopy clearly indicate the formation of particular doped phases with compositions Kx_xdibenzopentacene (xx = 1,2,3). Moreover, the stability of these phases as a function of temperature has been explored. Finally, the electronic excitation spectra also give insight into the electronic ground state of the potassium doped 1,2;8,9-dibenzopentacene films.Comment: 6 pages, 5 figures. arXiv admin note: text overlap with arXiv:1201.200

    Stellar Population Variations in the Milky Way's Stellar Halo

    Get PDF
    If the stellar halos of disk galaxies are built up from the disruption of dwarf galaxies, models predict highly structured variations in the stellar populations within these halos. We test this prediction by studying the ratio of blue horizontal branch stars (BHB stars; more abundant in old, metal-poor populations) to main-sequence turn-off stars (MSTO stars; a feature of all populations) in the stellar halo of the Milky Way using data from the Sloan Digital Sky Survey. We develop and apply an improved technique to select BHB stars using ugr color information alone, yielding a sample of ~9000 g<18 candidates where ~70% of them are BHB stars. We map the BHB/MSTO ratio across ~1/4 of the sky at the distance resolution permitted by the absolute magnitude distribution of MSTO stars. We find large variations of BHB/MSTO star ratio in the stellar halo. Previously identified, stream-like halo structures have distinctive BHB/MSTO ratios, indicating different ages/metallicities. Some halo features, e.g., the low-latitude structure, appear to be almost completely devoid of BHB stars, whereas other structures appear to be rich in BHB stars. The Sagittarius tidal stream shows an apparent variation in BHB/MSTO ratio along its extent, which we interpret in terms of population gradients within the progenitor dwarf galaxy. Our detection of coherent stellar population variations between different stellar halo substructures provides yet more support to cosmologically motivated models for stellar halo growth.Comment: Astronomical Journal, in press. 10 pages, 5 color figures. Much better printed in colo
    corecore