766 research outputs found

    Acid catalyzed synthesis of dimethyl isosorbide via dimethyl carbonate chemistry

    Get PDF
    Dimethyl isosorbide (DMI) is a bio-based solvent that can be used as green alternative for conventional dipolar media (dimethyl sulfoxide, dimethylformamide, and dimethylacetamide). The main synthetic procedures to DMI reported in the literature are based on the methylation of isosorbide employing different alkylating agents including toxic halogen compounds such as alkyl halides. A more sustainable alternative would be to employ dimethyl carbonate (DMC), a well-known green reagent and solvent, considered one of the most promising methylating agents for its good biodegradability and low toxicity. Indeed, in recent years, DMC-promoted methylation of isosorbide has been extensively exploited although mostly in the presence of a base or an amphoteric catalyst. In this work, we report for the first time a comprehensive investigation on the synthesis of DMI via DMC chemistry promoted by heterogeneous acid catalyst (Amberlyst-36 and Purolite CT275DR). Re- action conditions were optimized and then applied for the methylation of isosorbide and its epimers, isoidide and isomannide. Considerations on the related reaction mechanism were reported highlighting the difference in the preferred reaction pathways among this new synthetic approach and the previously reported base-catalyzed procedures

    Analisi della risposta dinamica di poliuretani termoplastici

    Get PDF

    CLAM, a continuous line alignment and monitoring method for RICH mirrors

    Get PDF
    A method is proposed for the angular alignment of RICH mirrors and for its monitoring, in particular for the COMPASS RICH-1 mirror system. Observing (by means of four cameras) apparent discontinuities in the images of continuous linear objects reflected by the mirrors surface, a relative misalignment of adjacent mirrors can be deduced and then corrected. The method can attain a sensitivity of at least 0.1 mrad, and can also be applied on-line to keep under control the stability of the mirrors during data taking

    A map-matching algorithm dealing with sparse cellular fingerprint observations

    Get PDF
    The widespread availability of mobile communication makes mobile devices a resource for the collection of data about mobile infrastructures and user mobility. In these contexts, the problem of reconstructing the most likely trajectory of a device on the road network on the basis of the sequence of observed locations (map-matching problem) turns out to be particularly relevant. Different contributions have demonstrated that the reconstruction of the trajectory of a device with good accuracy is technically feasible even when only a sparse set of GNSS positions is available. In this paper, we face the problem of coping with sparse sequences of cellular fingerprints. Compared to GNSS positions, cellular fingerprints provide coarser spatial information, but they work even when a device is missing GNSS positions or is operating in an energy saving mode. We devise a new map-matching algorithm, that exploits the well-known Hidden Markov Model and Random Forests to successfully deal with noisy and sparse cellular observations. The performance of the proposed solution has been tested over a medium-sized Italian city urban environment by varying both the sampling of the observations and the density of the fingerprint map as well as by including some GPS positions into the sequence of fingerprint observations

    Development of large area resistive electrodes for ATLAS NSW Micromegas

    Get PDF
    Micromegas with resistive anodes will be used for the NSW upgrades of the ATLAS experiment at LHC. Resistive electrodes are used in MPGD devices to prevent sparks in high-rate operation. Large-area resistive electrodes for Micromegas have been developed using two different technologies: screen printing and carbon sputtering. The maximum resistive foil size is 45 Ă— 220 cm with a printed pattern of 425-ÎĽm pitch strips. These technologies are also suitable for mass production. Prototypes of a production model series have been successfully produced. In this paper, we report the development, the production status, and the test results of resistive Micromegas

    RHIP, a Radio-controlled High-Voltage Insulated Picoammeter and its usage in studying ion backflow in MPGD-based photon detectors

    Full text link
    A picoammeter system has been developed and engineering. It consists in a current-voltage converter, based on an operational amplifier with very low input current, a high precision ADC, a radio controlled data acquisition unit and the computer-based control, visualization and storage. The precision is of the order of a tenth of picoampers and it can measure currents between electrodes at potentials up to 8 kV. The system is battery powered and a number of strategies have been implemented to limit the power consumption. The system is designed for multichannel applications, up to 256 parallel channels. The overall implementation is cost-effective to make the availability of multichannel setups easily affordable. The design, implementation and performance of the picoammeter system are described in detail as well as a an application: the measurement of ion backflow in MPGD-based photon detectors.Comment: 5th International Conference on Micro-Pattern Gas Detectors (MPGD2017), presentation by Silvia Dalla Torr

    Remote alignment of large mirror array for RICH detectors

    Get PDF
    Image focusing in large RICH detectors is obtained by composite systems of mirror elements. Monitoring and adjusting the alignment of the mirror elements during data taking are important handles to improve the detector resolution. Mirror adjustment via piezoelectric actuators can combine unprecedented accuracy and match some fundamental requirements: the detector material budget can be kept low and the high purity of the gas radiator can be preserved, a prerequisite when UV photons are detected. A system based on this principle, well suited for COMPASS RICH-1 mirrors, is proposed

    Study of MicroPattern Gaseous detectors with novel nanodiamond based photocathodes for single photon detection in EIC RICH

    Full text link
    Identification of high momentum hadrons at the future EIC is crucial, gaseous RICH detectors are therefore viable option. Compact collider setups impose to construct RICHes with small radiator length, hence significantly limiting the number of detected photons. More photons can be detected in the far UV region, using a windowless RICH approach. QE of CsI degrades under strong irradiation and air contamination. Nanodiamond based photocathodes (PCs) are being developed as an alternative to CsI. Recent development of layers of hydrogenated nanodiamond powders as an alternative photosensitive material and their performance, when coupled to the THick Gaseous Electron Multipliers (THGEM)-based detectors, are the objects of an ongoing R\&D. We report about the initial phase of our studies.Comment: 3 pages, 5 figures, RICH2018 conference proceedin

    Rise and fall of hidden string order of lattice bosons

    Full text link
    We investigate the ground state properties of a newly discovered phase of one dimensional lattice bosons with extended interactions (see E. G. Dalla Torre et al., Phys. Rev. Lett. \textbf{97}, 260401 (2006)). The new phase, termed the Haldane Insulator (HI) in analogy with the gapped phase of spin-1 chains, is characterized by a non local order parameter, which can only be written as an infinite string in terms of the bosonic densities. We show that the string order can nevertheless be probed with physical fields that couple locally, via the effect those fields have on the quantum phase transitions separating the exotic phase from the conventional Mott and density wave phases. Using a field theoretical analysis we show that a perturbation which breaks lattice inversion symmetry gaps the critical point separating the Mott and Haldane phases and eliminates the sharp distinction between them. This is remarkable given that neither of these phases involves broken inversion symmetry. We also investigate the evolution of the phase diagram with the tunable coupling between parallel chains in an optical lattice setup. We find that inter-chain tunneling destroys the direct phase transition between the Mott and Haldane insulators by establishing an intermediate superfluid phase. On the other hand coupling the chains only by weak repulsive interactions does not modify the structure of the phase diagram. The theoretical predictions are confirmed with numerical calculations using the Density Matrix Renormalization Group (DMRG).Comment: 15 pages, 8 figures. Minor corrections, published versio
    • …
    corecore