88 research outputs found

    Comparison between S. T. radar and in situ balloon measurements

    Get PDF
    A campaign for simultaneous in situ and remote observation of both troposphere and stratosphere took place near Aire-sur-l'Adour (in southeastern France) on May 4, 1984. The aim of this campaign was a better understanding of the physics of radar echoes. The backscattered signal obtained with a stratosphere-troposphere radar both at the vertical and 15 deg. off vertical is compared with the velocity and temperature measurements made in the same region (about 10 km north of the radar site) by balloon-borne ionic anenometers and temperature sensors. In situ measurements clearly indicate that the temperature fluctuations are not always consistent with the standard turbulent theory. Nevertheless, the assumptions generally made (isotropy and turbulent field in k) and the classical formulation so derived for radar reflectivity are able to reproduce the shape of the radar return power profiles in oblique directions. Another significant result is the confirmation of the role played by the atmospheric stratification in the vertical echo power. It is important to develop these simultaneous in situ and remote experiments for a better description of the dynamical and thermal structure of the atmosphere and for a better understanding of the mechanisms governing clear-air radar reflectivity

    First climatology of polar mesospheric clouds from GOMOS/ENVISAT stellar occultation instrument

    Get PDF
    GOMOS (Global Ozone Monitoring by Occultation of Stars), on board the European platform ENVISAT launched in 2002, is a stellar occultation instrument combining four spectrometers and two fast photometers which measure light at 1 kHz sampling rate in the two visible channels 470–520 nm and 650–700 nm. On the day side, GOMOS does not measure only the light from the star, but also the solar light scattered by the atmospheric molecules. In the summer polar days, Polar Mesospheric Clouds (PMC) are clearly detected using the photometers signals, as the solar light scattered by the cloud particles in the instrument field of view. The sun-synchronous orbit of ENVISAT allows observing PMC in both hemispheres and the stellar occultation technique ensures a very good geometrical registration. Four years of data, from 2002 to 2006, are analyzed up to now. GOMOS data set consists of approximately 10 000 cloud observations all over the eight PMC seasons studied. The first climatology obtained by the analysis of this data set is presented, focusing on the seasonal and latitudinal coverage, represented by global maps. GOMOS photometers allow a very sensitive PMC detection, showing a frequency of occurrence of 100% in polar regions during the middle of the PMC season. According to this work mesospheric clouds seem to be more frequent in the Northern Hemisphere than in the Southern Hemisphere. The PMC altitude distribution was also calculated. The obtained median values are 82.7 km in the North and 83.2 km in the South

    GOMOS: Gobal Ozone Monitoring by Occultation of Stars

    Get PDF
    In this paper we report on the progress and status of the Global Ozone Monitoring by Occultation of Stars (GOMOS) instrument, and imaging spectrometer under development for flight on the European Space Agency's Polar Orbiting Earth Mission (POEM-1) mission in 1998. Employing occultation of stars as a light probe of the Earth's atmosphere from a sun-sychronous polar orbit, the instrument will monitor ozone and other atmospheric trace gases over the entire globe. Atmospheric transmission resolution of approximately 1.7 km. When data are combined regionally, it will be possible to detect ozone concentration trends as small as 0.05 percent/year, depending on the degree of combination

    A global climatology of the mesospheric sodium layerfrom GOMOS data during the 2002-2008 period

    Get PDF
    This paper presents a climatology of the mesospheric sodium layer built from the processing of 7 years of GOMOS data. With respect to preliminary results already published for the year 2003, a more careful analysis was applied to the averaging of occultations inside the climatological bins (10° in latitude-1 month). Also, the slant path absorption lines of the Na doublet around 589 nm shows evidence of partial saturation that was responsible for an underestimation of the Na concentration in our previous results. The sodium climatology has been validated with respect to the Fort Collins lidar measurements and, to a lesser extent, to the OSIRIS 2003–2004 data. Despite the important natural sodium variability, we have shown that the Na vertical column has a marked semi-annual oscillation at low latitudes that merges into an annual oscillation in the polar regions, a spatial distribution pattern that was unreported so far. The sodium layer seems to be clearly influenced by the mesospheric global circulation and the altitude of the layer shows clear signs of subsidence during polar winter. The climatology has been parameterized by time-latitude robust fits to allow for easy use. Taking into account the non-linearity of the transmittance due to partial saturation, an experimental approach is proposed to derive mesospheric temperatures from limb remote sounding measurements

    Energy- and flux-budget (EFB) turbulence closure model for the stably stratified flows. Part I: Steady-state, homogeneous regimes

    Get PDF
    We propose a new turbulence closure model based on the budget equations for the key second moments: turbulent kinetic and potential energies: TKE and TPE (comprising the turbulent total energy: TTE = TKE + TPE) and vertical turbulent fluxes of momentum and buoyancy (proportional to potential temperature). Besides the concept of TTE, we take into account the non-gradient correction to the traditional buoyancy flux formulation. The proposed model grants the existence of turbulence at any gradient Richardson number, Ri. Instead of its critical value separating - as usually assumed - the turbulent and the laminar regimes, it reveals a transition interval, 0.1< Ri <1, which separates two regimes of essentially different nature but both turbulent: strong turbulence at Ri<<1; and weak turbulence, capable of transporting momentum but much less efficient in transporting heat, at Ri>1. Predictions from this model are consistent with available data from atmospheric and lab experiments, direct numerical simulation (DNS) and large-eddy simulation (LES).Comment: 40 pages, 6 figures, Boundary-layer Meteorology, resubmitted, revised versio

    Variable anisotropy of small-scale stratospheric irregularities retrieved from stellar scintillation measurements by GOMOS/Envisat

    No full text
    In this paper, we consider possibilities for studying the anisotropy of small-scale air density irregularities using satellite observations of bi-chromatic stellar scintillations during tangential occultations. Estimation of the anisotropy coefficient (the ratio of the characteristic horizontal to vertical scales) and other atmospheric parameters is based on the comparison of simulated/theoretical and experimental auto-spectra and coherency spectra of scintillation. Our analyses exploit a 3-D model of the spectrum of atmospheric inhomogeneities, which consists of anisotropic and isotropic components. For the anisotropic component, a spectral model with variable anisotropy is used. Using stellar scintillation measurements by GOMOS (Global Ozone Monitoring by Occultation of Stars) fast photometers, estimates of the anisotropy coefficient are obtained for atmospheric irregularities with vertical scales of 8–55 m at altitudes of 43–30 km. It is shown that the anisotropy increases from about 10 to 50 with increasing vertical scales

    Anisotropy of small-scale stratospheric irregularities retrieved from scintillations of a double star α-Cru observed by GOMOS/ENVISAT

    No full text
    In this paper, we discuss estimating anisotropy of air density irregularities (ratio of characteristic horizontal and vertical scales) from satellite observations of bi-chromatic scintillations of a double star whose components are not resolved by the detector. The analysis is based on fitting experimental auto- and cross-spectra of scintillations by those computed using the 3-D spectral model of atmospheric irregularities consisting of anisotropic and isotropic components. Application of the developed method to the scintillation measurements of the double star α-Cru by GOMOS (Global Ozone Monitoring by Occultation of Stars) fast photometers results in estimates of anisotropy coefficient of ~15–20 at altitudes 30–38 km, as well as other parameters of atmospheric irregularities. The obtained estimates of the anisotropy coefficient correspond to small-scale irregularities, close to the buoyancy scale

    Estimation of the turbulent heat flux in the lower stratosphere from high resolution radar measurements

    No full text
    International audienceTwo estimates of the turbulent diffusivity (i.e., the heat flux per unit gradient) in the lower stratosphere are inferred from high-resolution radar measurements and compared. First, the local heat flux (within the turbulent patches) is evaluated from the dissipation rate of turbulent kinetic energy k under the basic assumptions of local homogeneity and stationarity of the fluctuations. We then estimated the effective heat flux per unit gradient as the time-averaged flux for a given altitude during the measurement period (six hours), taking into account the observed turbulence intermittence. The time-averaged heat flux per unit gradient is found to be ~2 x 10 -2m2s-1 typically, in good agreement with some of the weakest estimates of diffusivity already published. The observed ratio between the local and the time averaged fluxes can reach about one order of magnitude. This last result stresses the fact that turbulent diffusivity inferred from MST radars measurements cannot generally be directly interpreted as an effective diffusivity, since radar estimates, in most cases, do not take into account the turbulence intermittence

    Anisotropy of small-scale stratospheric irregularities retrieved from scintillations of a double star α-Cru observed by GOMOS/ENVISAT

    No full text
    In this paper, we discuss estimating anisotropy of air density irregularities (ratio of characteristic horizontal and vertical scales) from satellite observations of bi-chromatic scintillations of a double star whose components are not resolved by the detector. The analysis is based on fitting experimental auto- and cross-spectra of scintillations by those computed using the 3-D spectral model of atmospheric irregularities consisting of anisotropic and isotropic components. Application of the developed method to the scintillation measurements of the double star α-Cru by GOMOS (Global Ozone Monitoring by Occultation of Stars) fast photometers results in estimates of anisotropy coefficient of ~15-20 at altitudes 30-38 km, as well as other parameters of atmospheric irregularities. The obtained estimates of the anisotropy coefficient correspond to small-scale irregularities, close to the buoyancy scale
    • …
    corecore