64 research outputs found

    Garnet petrochronology reveals the lifetime and dynamics of phonolitic magma chambers at Somma-Vesuvius

    Get PDF
    Somma-Vesuvius is one of the most iconic active volcanoes with historic and archeological records of numerous hazardous eruptions. Petrologic studies of eruptive products provide insights into the evolution of the magma reservoir before eruption. Here, we quantify the duration of shallow crustal storage and document the evolution of phonolitic magmas before major eruptions of Somma-Vesuvius. Garnet uranium-thorium petrochronology suggests progressively shorter pre-eruption residence times throughout the lifetime of the volcano. Residence times mirror the repose intervals between eruptions, implying that distinct phonolite magma batches were present throughout most of the volcano’s evolution, thereby controlling the eruption dynamics by preventing the ascent of mafic magmas from longer-lived and deeper reservoirs. Frequent lower-energy eruptions during the recent history sample this deeper reservoir and suggest that future Plinian eruptions are unlikely without centuries of volcanic quiescence. Crystal residence times from other volcanoes reveal that long-lived deep-seated reservoirs and transient upper crustal magma chambers are common features of subvolcanic plumbing systems

    Amphibole and apatite insights into the evolution and mass balance of Cl and S in magmas associated with porphyry copper deposits

    Get PDF
    Chlorine and sulfur are of paramount importance for supporting the transport and deposition of ore metals at magmatic–hydrothermal systems such as the Coroccohuayco Fe–Cu–Au porphyry–skarn deposit, Peru. Here, we used recent partitioning models to determine the Cl and S concentration of the melts from the Coroccohuayco magmatic suite using apatite and amphibole chemical analyses. The pre-mineralization gabbrodiorite complex hosts S-poor apatite, while the syn- and post-ore dacitic porphyries host S-rich apatite. Our apatite data on the Coroccohuayco magmatic suite are consistent with an increasing oxygen fugacity (from the gabbrodiorite complex to the porphyries) causing the dominant sulfur species to shift from S2− to S6+ at upper crustal pressure where the magmas were emplaced. We suggest that this change in sulfur speciation could have favored S degassing, rather than its sequestration in magmatic sulfides. Using available partitioning models for apatite from the porphyries, pre-degassing S melt concentration was 20–200 ppm. Estimates of absolute magmatic Cl concentrations using amphibole and apatite gave highly contrasting results. Cl melt concentrations obtained from apatite (0.60 wt% for the gabbrodiorite complex; 0.2–0.3 wt% for the porphyries) seems much more reasonable than those obtained from amphibole which are very low (0.37 wt% for the gabbrodiorite complex; 0.10 wt% for the porphyries). In turn, relative variations of the Cl melt concentrations obtained from amphibole during magma cooling are compatible with previous petrological constraints on the Coroccohuayco magmatic suite. This confirms that the gabbrodioritic magma was initially fluid undersaturated upon emplacement, and that magmatic fluid exsolution of the gabbrodiorite and the pluton rooting the porphyry stocks and dikes were emplaced and degassed at 100–200 MPa. Finally, mass balance constraints on S, Cu and Cl were used to estimate the minimum volume of magma required to form the Coroccohuayco deposit. These three estimates are remarkably consistent among each other (ca. 100 km3) and suggest that the Cl melt concentration is at least as critical as that of Cu and S to form an economic mineralization

    Saildrone: adaptively sampling the marine environment

    Get PDF
    Author Posting. © American Meteorological Society, 2020. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Bulletin of the American Meteorological Society 101(6), (2020): E744-E762, doi:10.1175/BAMS-D-19-0015.1.From 11 April to 11 June 2018 a new type of ocean observing platform, the Saildrone surface vehicle, collected data on a round-trip, 60-day cruise from San Francisco Bay, down the U.S. and Mexican coast to Guadalupe Island. The cruise track was selected to optimize the science team’s validation and science objectives. The validation objectives include establishing the accuracy of these new measurements. The scientific objectives include validation of satellite-derived fluxes, sea surface temperatures, and wind vectors and studies of upwelling dynamics, river plumes, air–sea interactions including frontal regions, and diurnal warming regions. On this deployment, the Saildrone carried 16 atmospheric and oceanographic sensors. Future planned cruises (with open data policies) are focused on improving our understanding of air–sea fluxes in the Arctic Ocean and around North Brazil Current rings.The Saildrone data collection mission was sponsored by the Saildrone Award, an annual data collection mission awarded by Saildrone Inc., and the Schmidt Family Foundation. The research was funded by the NASA Physical Oceanography Program Grant 80NSSC18K0837 and 80NSSC18K1441. The work by T. M. Chin, J. Vazquez-Cuerzo, and V. Tsontos was carried out at the Jet Propulsion Laboratory (JPL), California Institute of Technology, under a contract with the National Aeronautics and Space Administration (NASA). Piero L.F. Mazzini was supported by California Sea Grant Award NA18OAR4170073. We thank CeNCOOS for providing the HF radar data in the Gulf of the Farallones. Jose Gomez-Valdes was supported by CONACYT Grant 257125, and by CICESE. Work by Joel Scott and Ivona Cetinic was supported through NASA PACE. The work by Lisan Yu was supported by NOAA Ocean Observing and Monitoring Division under Grant NA14OAR4320158

    Air-sea fluxes with a focus on heat and momentum

    Get PDF
    Turbulent and radiative exchanges of heat between the ocean and atmosphere (hereafter heat fluxes), ocean surface wind stress, and state variables used to estimate them, are Essential Ocean Variables (EOVs) and Essential Climate Variables (ECVs) influencing weather and climate. This paper describes an observational strategy for producing 3-hourly, 25-km (and an aspirational goal of hourly at 10-km) heat flux and wind stress fields over the global, ice-free ocean with breakthrough 1-day random uncertainty of 15 W m–2 and a bias of less than 5 W m–2. At present this accuracy target is met only for OceanSITES reference station moorings and research vessels (RVs) that follow best practices. To meet these targets globally, in the next decade, satellite-based observations must be optimized for boundary layer measurements of air temperature, humidity, sea surface temperature, and ocean wind stress. In order to tune and validate these satellite measurements, a complementary global in situ flux array, built around an expanded OceanSITES network of time series reference station moorings, is also needed. The array would include 500–1000 measurement platforms, including autonomous surface vehicles, moored and drifting buoys, RVs, the existing OceanSITES network of 22 flux sites, and new OceanSITES expanded in 19 key regions. This array would be globally distributed, with 1–3 measurement platforms in each nominal 10° by 10° box. These improved moisture and temperature profiles and surface data, if assimilated into Numerical Weather Prediction (NWP) models, would lead to better representation of cloud formation processes, improving state variables and surface radiative and turbulent fluxes from these models. The in situ flux array provides globally distributed measurements and metrics for satellite algorithm development, product validation, and for improving satellite-based, NWP and blended flux products. In addition, some of these flux platforms will also measure direct turbulent fluxes, which can be used to improve algorithms for computation of air-sea exchange of heat and momentum in flux products and models. With these improved air-sea fluxes, the ocean’s influence on the atmosphere will be better quantified and lead to improved long-term weather forecasts, seasonal-interannual-decadal climate predictions, and regional climate projections

    Efficient methodology for the construction of substituted spiroketals. Model studies towards the synthesis of the eastern spiroketal subunit of okadaic acid.

    No full text
    The model spiroketal subunit 19, featuring the eastern fragment of okadaic acid has been assembled in three steps with full regio- and stereo-control. (C) 1997 Elsevier Science Ltd

    Concise and stereocontrolled assembly of substituted dihydropyrans. Synthetic studies towards the trans-dioxadecalin subunit of okadaic acid.

    No full text
    A simple methodology for the stereocontrolled synthesis of dihydropyrans has been established. The trans-dioxadecalin 22, featuring the middle portion of okadaic acid, has been efficiently assembled using this strategy. (C) 1997 Elsevier Science Ltd

    Évaluation des pratiques professionnelles (EPP) en nutrition parentérale au Centre régional de lutte contre le cancer (CRLCC) de Rennes

    No full text
    National audienceObjectives: In 2015, a formative assessment about relevance of parenteral nutrition (PN) prescriptions was performed in a French Cancer Center following the survey proposed by the French speaking Society for Clinical Nutrition and Metabolism (SFNEP).Methods: All patients hospitalized in acute care wards from January 1st to December 31, 2014 and receiving PN were retrospectively studied. Were analyzed the criteria for PN indication relevance: previous nutritional assessment and non-functional gastrointestinal tract; PN prescription relevance: micronutrients administration, amount of energy prescribed, PN duration, and relevance of clinical and biological monitoring.Results: Forty-six patients (49 PN prescriptions) were studied. The indication was relevant in only 53% of cases. Enteral nutrition was tested or proposed but refused in 2% of cases. Nutritional screening was performed in 65% of cases. In 39% of cases, energy intake was not adequate: > 35 kcal/kg/day in 6% or 35 kcal/kg/jour dans 6 % ou < 20 kcal/kg/jour dans 33 % des cas. L’adjonction de micronutriments était manquante dans 14 % des prescriptions. La durée moyenne de la NP était de 10,9 ± 8,8 jours. La surveillance du poids était réalisée dans 31 % des cas et la surveillance biologique était incomplète dans 96 % des cas.Conclusion: La plupart des prescriptions de NP ne respectait pas les recommandations de la SFNEP, notamment parce que le recours à la nutrition entérale et le dépistage de la dénutrition étaient insuffisants
    • …
    corecore