5,122 research outputs found

    Line and continuum radiative transfer modelling of AA Tau

    Get PDF
    We present photometric and spectroscopic models of the Classical T Tauri star AA Tau. Photometric and spectroscopic variability present in observations of AA Tau is attributed to a magnetically induced warp in the accretion disc, periodically occulting the photosphere on an 8.2--day timescale. Emission line profiles show signatures of both infall, attributed to magnetospherically accreting material, and outflow. Using the radiative transfer code TORUS, we have investigated the geometry and kinematics of AA Tau's circumstellar disc and outflow, which is modelled here as a disc wind. Photometric models have been used to constrain the aspect ratio of the disc, the offset angle of the magnetosphere dipole with respect to the stellar rotation axis, and the inner radius of the circumstellar disc. Spectroscopic models have been used to constrain the wind and magnetosphere temperatures, wind acceleration parameter, and mass loss rate. We find observations are best fitted by models with a mass accretion rate of 5×10−95\times10^{-9} M⊙_\odot yr−1^{-1}, a dipole offset of between 10∘10^\circ and 20∘20^\circ, a magnetosphere that truncates the disc from 5.2 to 8.8 R⋆_\star, a mass-loss-rate to accretion-rate ratio of ~ 0.1, a magnetosphere temperature of 8500 -- 9000 K, and a disc wind temperature of 8000 K.Comment: 22 pages, 32 figures, 4 tables. Accepted by MNRAS. V3: Corrected typ

    Constraints on the disk geometry of the T Tauri star AA Tau from linear polarimetry

    Full text link
    We have simultaneously monitored the photometric and polarimetric variations of the Classical T Tauri star AA Tau during the fall of 2002. We combine these data with previously published polarimetric data covering two earlier epochs. The phase coverage is complete, although not contiguous. AA Tau clearly shows cyclic variations coupled with the rotation of the system. The star-disk system produces a repeatable polarisation curve where the polarisation increases with decreasing brightness. The data fit well with the model put forward by Bouvier et al. (1999) where AA Tau is viewed almost edge-on and its disk is actively dumping material onto the central star via magnetospheric accretion. The inner edge of the disk is deformed by its interaction with the tilted magnetosphere, producing eclipses as it rotates and occults the photosphere periodically. From the shape of the polarisation curve in the QU-Plane we confirm that the accretion disk is seen at a large inclination, almost edge-on, and predict that its position angle is PA~90 deg., i.e., that the disk's major axis is oriented in the East-West direction.Comment: Astron. Astrophys., in pres

    The evolution of surface magnetic fields in young solar-type stars

    Full text link
    The surface rotation rates of young solar-type stars decrease rapidly with age from the end of the pre-main sequence though the early main sequence. This suggests that there is also an important change in the dynamos operating in these stars, which should be observable in their surface magnetic fields. Here we present early results in a study aimed at observing the evolution of these magnetic fields through this critical time period. We are observing stars in open clusters and stellar associations to provide precise ages, and using Zeeman Doppler Imaging to characterize the complex magnetic fields. Presented here are results for six stars, three in the in the beta Pic association (~10 Myr old) and three in the AB Dor association (~100 Myr old).Comment: To appear in the proceedings of IAU symposium 302: Magnetic fields throughout stellar evolution. 2 pages, 3 figure

    A deep, wide-field search for substellar members in NGC 2264

    Full text link
    We report the first results of our ongoing campaign to discover the first brown dwarfs (BD) in NGC 2264, a young (3 Myr), populous star forming region for which our optical studies have revealed a very high density of potential candidates - 236 in << 1 deg2^2 - from the substellar limit down to at least ∌\sim 20 MJup_{\rm Jup} for zero reddening. Candidate BD were first selected using wide field (I,zI,z) band imaging with CFH12K, by reference to current theoretical isochrones. Subsequently, 79 (33%) of the I,zI,z sample were found to have near-infrared 2MASS photometry (JHKsJHK_s ±\pm 0.3 mag. or better), yielding dereddened magnitudes and allowing further investigation by comparison with the location of NextGen and DUSTY isochrones in colour-colour and colour-magnitude diagrams involving various combinations of II,JJ,HH and KsK_s. We discuss the status and potential substellarity of a number of relatively unreddened (Av_{\rm v} << 5) likely low-mass members in our sample, but in spite of the depth of our observations in I,zI,z, we are as yet unable to unambiguously identify substellar candidates using only 2MASS data. Nevertheless, there are excellent arguments for considering two faint (observed II ∌\sim 18.4 and 21.2) objects as cluster candidates with masses respectively at or rather below the hydrogen burning limit. More current candidates could be proven to be cluster members with masses around 0.1 M⊙_{\odot} {\it via} gravity-sensitive spectroscopy, and deeper near-infrared imaging will surely reveal a hitherto unknown population of young brown dwarfs in this region, accessible to the next generation of deep near-infrared surveys.Comment: 10 pages, 12 figures, accepted by A&

    Dynamical Masses of Young Stars in Multiple Systems

    Full text link
    We present recent measurements of the orbital motion in the young binaries DF Tau and ZZ Tau, and the hierarchical triple Elias 12, that were obtained with the Fine Guidance Sensors on the HST and at the Keck Observatory using adaptive optics. Combining these observations with previous measurements from the literature, we compute preliminary orbital parameters for DF Tau and ZZ Tau. We find that the orbital elements cannot yet be determined precisely because the orbital coverage spans only about 90 degr in position angle. Nonetheless, the range of possible values for the period and semi-major axis already defines a useful estimate for the total mass in DF Tau and ZZ Tau, with values of 0.90{+0.85}{-0.35} M_sun and 0.81{+0.44}{-0.25} M_sun, respectively, at a fiducial distance of 140 pc.Comment: 26 pages, 9 figures, accepted for publication in A

    Dynamical star-disk interaction in the young stellar system V354 Mon

    Full text link
    The main goal of this work is to characterize the mass accretion and ejection processes of the classical T Tauri star V354 Mon, a member of the young stellar cluster NGC 2264. In March 2008, photometric and spectroscopic observations of V354 Mon were obtained simultaneously with the CoRoT satellite, the 60 cm telescope at the Observat\'orio Pico dos Dias (LNA - Brazil) equipped with a CCD camera and Johnson/Cousins BVRI filters, and the SOPHIE \'echelle spectrograph at the Observatoire de Haute-Provence (CNRS - France). The light curve of V354 Mon shows periodical minima (P = 5.26 +/- 0.50 days) that vary in depth and width at each rotational cycle. From the analysis of the photometric and spectroscopic data, it is possible to identify correlations between the emission line variability and the light-curve modulation of the young system, such as the occurrence of pronounced redshifted absorption in the H_alpha line at the epoch of minimum flux. This is evidence that during photometric minima we see the accretion funnel projected onto the stellar photosphere in our line of sight, implying that the hot spot coincides with the light-curve minima. We applied models of cold and hot spots and a model of occultation by circumstellar material to investigate the source of the observed photometric variations. We conclude that nonuniformly distributed material in the inner part of the circumstellar disk is the main cause of the photometric modulation, which does not exclude the presence of hot and cold spots at the stellar surface. It is believed that the distortion in the inner part of the disk is created by the dynamical interaction between the stellar magnetosphere, inclined with respect to the rotation axis, and the circumstellar disk, as also observed in the classical T Tauri star AA Tau and predicted by magnetohydrodynamical numerical simulations.Comment: Accepted by Astronomy and Astrophysic

    The substellar population of the young cluster lambda Orionis

    Full text link
    By collecting optical and infrared photometry and low resolution spectroscopy, we have identified a large number of low mass stars and brown dwarf candidates belonging to the young cluster (~5 Myr) associated with the binary star lambda Orionis. The lowest mass object found is a M8.5 with an estimated mass of 0.02 Msun (~0.01 Msun for objects without spectroscopic confirmation). For those objects with spectroscopy, the measured strength of the Halpha emission line follows a distribution similar to other clusters with the same age range, with larger equivalent widths for cooler spectral types. Three of the brown dwarfs have Halpha emission equivalent widths of order 100 \AA, suggestive that they may have accretion disks and thus are the substellar equivalent of Classical T Tauri stars. We have derived the Initial Mass Function for the cluster. For the substellar regime, the index of the mass spectrum is alpha=0.60$+-0.06, very similar to other young associations.Comment: Astrophysica Journal, accepted April 2, 200

    High-pressure annealing of a prestructured nanocrystalline precursor to obtain tetragonal and orthorhombic polymorphs of Hf3N4

    No full text
    Transition metal nitrides containing metal ions in high oxidation states are a significant goal for the discovery of new families of semiconducting materials. Most metal nitride compounds prepared at high temperature and high pressure from the elements have metallic bonding. However amorphous or nanocrystalline compounds can be prepared via metal-organic chemistry routes giving rise to precursors with a high nitrogen:metal ratio. Using X-ray diffraction in parallel with high pressure laser heating in the diamond anvil cell this work highlights the possibility of retaining the composition and structure of a metastable nanocrystalline precursor under high pressure-temperature conditions. Specifically, a nanocrystalline Hf3N4 with a tetragonal defect-fluorite structure can be crystallized under high-P,T conditions. Increasing the pressure and temperature of crystallization leads to the formation of a fully recoverable orthorhombic (defect cottunite-structured) polymorph. This approach identifies a novel class of pathways to the synthesis of new crystalline nitrogen-rich transition metal nitrides

    Time-resolved photometry of the young dipper RX~J1604.3-2130A:Unveiling the structure and mass transport through the innermost disk

    Get PDF
    Context. RX J1604.3-2130A is a young, dipper-type, variable star in the Upper Scorpius association, suspected to have an inclined inner disk, with respect to its face-on outer disk. Aims. We aim to study the eclipses to constrain the inner disk properties. Methods. We used time-resolved photometry from the Rapid Eye Mount telescope and Kepler 2 data to study the multi-wavelength variability, and archival optical and infrared data to track accretion, rotation, and changes in disk structure. Results. The observations reveal details of the structure and matter transport through the inner disk. The eclipses show 5 d quasi-periodicity, with the phase drifting in time and some periods showing increased/decreased eclipse depth and frequency. Dips are consistent with extinction by slightly processed dust grains in an inclined, irregularly-shaped inner disk locked to the star through two relatively stable accretion structures. The grains are located near the dust sublimation radius (similar to 0.06 au) at the corotation radius, and can explain the shadows observed in the outer disk. The total mass (gas and dust) required to produce the eclipses and shadows is a few % of a Ceres mass. Such an amount of mass is accreted/replenished by accretion in days to weeks, which explains the variability from period to period. Spitzer and WISE infrared variability reveal variations in the dust content in the innermost disk on a timescale of a few years, which is consistent with small imbalances (compared to the stellar accretion rate) in the matter transport from the outer to the inner disk. A decrease in the accretion rate is observed at the times of less eclipsing variability and low mid-IR fluxes, confirming this picture. The v sin i = 16 km s(-1) confirms that the star cannot be aligned with the outer disk, but is likely close to equator-on and to be aligned with the inner disk. This anomalous orientation is a challenge for standard theories of protoplanetary disk formation.Science & Technology Facilities Council (STFC): ST/S000399/1. ESO fellowship. European Union (EU): 823 823. German Research Foundation (DFG): FOR 2634/1 TE 1024/1-1. French National Research Agency (ANR): ANR-16-CE31-0013. Alexander von Humboldt Foundation. European Research Council (ERC): 678 194. European Research Council (ERC): 742 095. National Aeronautics & Space Administration (NASA). National Science Foundation (NSF). National Aeronautics & Space Administration (NASA): NNG05GF22G. National Science Foundation (NSF): AST-0909182, AST-1 313 422

    Low-Mass Star Formation and the Initial Mass Function in the Rho Ophiuchi Cloud Core

    Full text link
    We have obtained moderate-resolution (R=800-1200) K-band spectra for ~100 stars within and surrounding the cloud core of rho Oph. We have measured spectral types and continuum veilings and have combined this information with results from new deep imaging. The IMF peaks at about 0.4 M_sun and slowly declines to the hydrogen burning limit with a slope of ~-0.5 in logarithmic units (Salpeter is +1.35). Our lower limits on the numbers of substellar objects demonstrate that the IMF probably does not fall more steeply below the hydrogen burning limit, at least down to ~0.02 M_sun. We then make the first comparison of mass functions of stars and pre-stellar clumps (Motte, Andre, & Neri) measured in the same region. The similar behavior of the two mass functions in rho Oph supports the suggestion of Motte et al. and Testi & Sargent that the stellar mass function in young clusters is a direct product of the process of cloud fragmentation. After considering the effect of extinction on the SED classifications of the sample, we find that ~17% of the rho Oph stars are Class I, implying ~0.1 Myr for the lifetime of this stage. In spectra separated by two years, we observe simultaneous variability in the Br gamma emission and K-band continuum veiling for two stars, where the hydrogen emission is brighter in the more heavily veiled data. This behavior indicates that the disk may contribute significantly to continuous K-band emission, in contrast to the proposal that the infalling envelope always dominates. Our detection of strong 2 micron veiling (r_K=1-4) in several Class II and III stars, which should have disks but little envelope material, further supports this proposition.Comment: 35 pages, 14 figures, accepted to Ap
    • 

    corecore