45 research outputs found

    Host Iron Binding Proteins Acting as Niche Indicators for Neisseria meningitidis

    Get PDF
    Neisseria meningitidis requires iron, and in the absence of iron alters its gene expression to increase iron acquisition and to make the best use of the iron it has. During different stages of colonization and infection available iron sources differ, particularly the host iron-binding proteins haemoglobin, transferrin, and lactoferrin. This study compared the transcriptional responses of N. meningitidis, when grown in the presence of these iron donors and ferric iron, using microarrays

    Dire le métissage linguistique et culturel à Rome

    No full text

    Bilinguisme et terminologie grammaticale gréco-latine

    No full text

    Heme acquisition by hemophores

    No full text
    International audienceBacterial hemophores are secreted to the extracellular medium, where they scavenge heme from various hemoproteins due to their higher affinity for this compound, and return it to their specific outer membrane receptor. HasR, the outer membrane receptor of the HasA hemophore, assumes multiple functions which require various energy levels. Binding of heme and, of heme-free or heme-loaded hemophores is energy-independent. Heme transfer from the holo-hemophore to the outer membrane receptor is also energy-independent. In contrast, heme transport and hemophore release require basal or high levels of TonB and proton motive force, respectively. In addition, HasR is a component of a signaling cascade, regulating expression of the has operon via specific sigma and anti-sigma factors encoded by genes clustered at the has operon. The signal is the heme landing on HasR in the presence of the hemophore in its apo form. The has system is the only system thus far characterized in which the anti-sigma factor is submitted to the same signaling cascade as the target operon. Specific autoregulation of the has system, combined with negative regulation by the Fur protein, permits bacterial adaptation to the available iron source. In the presence of a heme-loaded hemophore, inactive anti-sigma factor is accumulated and can be activated as soon as the heme source dries up. Hence, the has system, instead of being submitted to amplification like other systems regulated by sigma anti-sigma factors, functions by pulses triggered by heme availability

    Identification of a novel nanoRNase in Bartonella

    No full text
    In Escherichia coli, only one essential oligoribonuclease (Orn) can degrade oligoribonucleotides of five residues and shorter in length (nanoRNA). In Bacillus subtilis, NrnA and NrnB, which do not show any sequence similarity to Orn, have been identified as functional analogues of Orn. Sequence comparisons did not identify orn, nrnA or nrnB homologues in the genomes of the Chlamydia/Cyanobacteria and Alphaproteobacteria family members. Screening a genomic library from Bartonella birtlesii, a member of the Alphaproteobacteria, for genes that can complement a conditional orn mutant. in E. coli, we identified BA0969 (NrnC) as a functional analogue of Orn. NrnC is highly conserved (more than 80% identity) in the Bartonella genomes sequenced to date. Biochemical characterization showed that this protein exhibits oligo RNA degradation activity (nanoRNase activity). Like Orn from E. coli, NrnC is inhibited by micromolar amounts of 3'-phosphoadenosine 5'-phosphate in vitro. NrnC homologues are widely present in genomes of Alphaproteobacteria. Knock down of nrnC decreases the growth ability of Bartonella henselae, demonstrating the importance of nanoRNase activity in this bacterium
    corecore