115 research outputs found

    Similarities and differences of pumping conventional and self-compacting concrete

    Get PDF
    In Practice, Self-Compacting Concrete (SCC) is Considered as a Simple Extension of Conventional Vibrated Concrete (CVC) When Pumping is Concerned. the Same Equipment, Materials, Pumping Procedures and Guidelines Used for CVC Are Applied When Pumping SCC. on the Other Hand, It Has Been Clearly Shown that the Rheological Properties and the Mix Design of SCC Are Different Than CVC. Can the Same Pumping Principles Employed for CVC Be Applied for SCC? This Paper Compares the Some Published Results of Pumping of CVC with Those for SCC. a First Striking Difference between Pumping of CVC and SCC is the Flow Behaviour in the Pipes. the Flow of CVC is a Plug, Surrounded by a Lubricating Layer, While during the Flow of SCC, Part of the Concrete Volume itself is Sheared Inside the Pipe. as a Result, the Importance of Viscosity Increases in Case of SCC. Due to the Low Yield Stress of SCC, the Behaviour in Bends is Different, But Quite Complex to Study. Due to the Lower Content of Aggregate and Better Stability of SCC, as It is Less Prone to Internal Water Migration, Blocking is Estimated to Occur at Lower Frequency in Case of SCC. © RILEM 2010

    Return-to-activity after anatomical reconstruction of acute high-grade acromioclavicular separation

    Get PDF
    BACKGROUND: To evaluate return-to-activity (RtA) after anatomical reconstruction of acute high-grade acromioclavicular joint (ACJ) separation. METHODS: A total of 42 patients with anatomical reconstruction of acute high-grade ACJ-separation (Rockwood Type V) were surveyed to determine RtA at a mean 31 months follow-up (f-u). Sports disciplines, intensity, level of competition, participation in overhead and/or contact sports, as well as activity scales (DASH-Sport-Module, Tegner Activity Scale) were evaluated. Functional outcome evaluation included Constant score and QuickDASH. RESULTS: All patients (42/42) participated in sporting activities at f-u. Neither participation in overhead/contact sports, nor level of activity declined significantly (n.s.). 62 % (n = 26) of patients reported subjective sports specific ACJ integrity to be at least the same as prior to the trauma. Sporting intensity (hours/week: 7.3 h to 5.4 h, p = .004) and level of competition (p = .02) were reduced. If activity changed, in 50 % other reasons but clinical symptoms/impairment were named for modified behavior. QuickDASH (mean 6, range 0–54, SD 11) and DASH-Sport-Module (mean 6, range 0–56, SD 13) revealed only minor disabilities at f-u. Over time Constant score improved significant to an excellent score (mean 94, range 86–100, SD 4; p < .001). Functional outcome was not correlated with RtA (n.s.). CONCLUSION: All patients participated in sporting activities after anatomical reconstruction of high-grade (Rockwood Type V) ACJ-separation. With a high functional outcome there was no significant change in activity level (Tegner) and participation in overhead and/or contact sports observed. There was no correlation between functional outcome and RtA. Limiting, there were alterations in time spent for sporting activities and level of competition observed. But in 50 % those were not related to ACJ symptoms/impairment. Unrelated to successful re-established integrity and function of the ACJ it should be considered that patients decided not return-to-activity but are very content with the procedure

    Continental threat: How many common carp (Cyprinus carpio) are there in Australia?

    Get PDF
    Common carp (Cyprinus carpio) are one of the world's most destructive vertebrate pests. In Australia, they dominate many aquatic ecosystems causing a severe threat to aquatic plants, invertebrates, water quality, native fish and social amenity. The Australian Government is considering release of cyprinid herpesvirus-3 (CyHV-3) as a control measure and consequently a robust, continental-scale estimate of the carp population and biomass is essential to inform planning and risk management. Here, we pioneer a novel model-based approach to provide the first estimate of carp density (no/ha) and biomass density (kg/ha) at river reach/waterbody, basin and continental scales. We built a spatial layer of rivers and waterbodies, classified aquatic habitats and calculated the area of each throughout the range of carp in Australia. We then developed a database of fishery-independent electrofishing catch-per-unit-effort (CPUE) for habitat types, containing catch information for 574,145 carp caught at 4831 sites. Eastern Australia accounted for 96% of carp biomass and 92% of the total available wetted habitat area (16,686 km2) was occupied. To correct these data for variable detection efficiencies, we used existing electrofishing data and undertook additional field experiments to establish relationships between relative and absolute abundances. We then scaled-up site-based estimates to habitat types to generate continental estimates. The number of carp was estimated at 199.2 M (95%Crl: 106 M to 357.6 M) for an ‘average’ hydrological scenario and 357.5 M (95%Crl: 178.9 M to 685.1 M) for a ‘wet’ hydrological scenario. In eastern Australia, these numbers correspond with biomasses of 205,774 t (95%Crl: 117,532–356,482 t) (average scenario) and 368,357 t (95%Crl: 184,234–705,630 t) (wet scenario). At a continental scale the total biomass was estimated at 215,456 t for an ‘average’ hydrological scenario. Perennial lowland rivers had the highest CPUE and greatest biomass density (up to 826 kg/ha) and the modelled biomass exceeded a density-impact threshold of 80–100 kg/ha in 54% of wetlands and 97% of stream area in large lowland rivers. The continental-scale biomass estimates provide a baseline for focusing national conservation strategies to reduce carp populations below thresholds needed to restore aquatic ecosystems at a range of spatial scales

    Retroviral DNA Integration: ASLV, HIV, and MLV Show Distinct Target Site Preferences

    Get PDF
    The completion of the human genome sequence has made possible genome-wide studies of retroviral DNA integration. Here we report an analysis of 3,127 integration site sequences from human cells. We compared retroviral vectors derived from human immunodeficiency virus (HIV), avian sarcoma-leukosis virus (ASLV), and murine leukemia virus (MLV). Effects of gene activity on integration targeting were assessed by transcriptional profiling of infected cells. Integration by HIV vectors, analyzed in two primary cell types and several cell lines, strongly favored active genes. An analysis of the effects of tissue-specific transcription showed that it resulted in tissue-specific integration targeting by HIV, though the effect was quantitatively modest. Chromosomal regions rich in expressed genes were favored for HIV integration, but these regions were found to be interleaved with unfavorable regions at CpG islands. MLV vectors showed a strong bias in favor of integration near transcription start sites, as reported previously. ASLV vectors showed only a weak preference for active genes and no preference for transcription start regions. Thus, each of the three retroviruses studied showed unique integration site preferences, suggesting that virus-specific binding of integration complexes to chromatin features likely guides site selection

    Non-invasive muscle contraction assay to study rodent models of sarcopenia

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Age-related sarcopenia is a disease state of loss of muscle mass and strength that affects physical function and mobility leading to falls, fractures, and disability. The need for therapies to treat age-related sarcopenia has attracted intensive preclinical research. To facilitate the discovery of these therapies, we have developed a non-invasive rat muscle functional assay system to efficiently measure muscle force and evaluate the efficacy of drug candidates.</p> <p>Methods</p> <p>The lower leg muscles of anesthetized rats are artificially stimulated with surface electrodes on the knee holders and the heel support, causing the lower leg muscles to push isometric pedals that are attached to force transducers. We developed a stimulation protocol to perform a fatigability test that reveals functional muscle parameters like maximal force, the rate of fatigue, fatigue-resistant force, as well as a fatigable muscle force index. The system is evaluated in a rat aging model and a rat glucocorticoid-induced muscle loss model</p> <p>Results</p> <p>The aged rats were generally weaker than adult rats and showed a greater reduction in their fatigable force when compared to their fatigue-resistant force. Glucocorticoid treated rats mostly lost fatigable force and fatigued at a higher rate, indicating reduced force from glycolytic fibers with reduced energy reserves.</p> <p>Conclusions</p> <p>The involuntary contraction assay is a reliable system to assess muscle function in rodents and can be applied in preclinical research, including age-related sarcopenia and other myopathy.</p

    High-Resolution Functional Mapping of the Venezuelan Equine Encephalitis Virus Genome by Insertional Mutagenesis and Massively Parallel Sequencing

    Get PDF
    We have developed a high-resolution genomic mapping technique that combines transposon-mediated insertional mutagenesis with either capillary electrophoresis or massively parallel sequencing to identify functionally important regions of the Venezuelan equine encephalitis virus (VEEV) genome. We initially used a capillary electrophoresis method to gain insight into the role of the VEEV nonstructural protein 3 (nsP3) in viral replication. We identified several regions in nsP3 that are intolerant to small (15 bp) insertions, and thus are presumably functionally important. We also identified nine separate regions in nsP3 that will tolerate small insertions at low temperatures (30°C), but not at higher temperatures (37°C, and 40°C). Because we found this method to be extremely effective at identifying temperature sensitive (ts) mutations, but limited by capillary electrophoresis capacity, we replaced the capillary electrophoresis with massively parallel sequencing and used the improved method to generate a functional map of the entire VEEV genome. We identified several hundred potential ts mutations throughout the genome and we validated several of the mutations in nsP2, nsP3, E3, E2, E1 and capsid using single-cycle growth curve experiments with virus generated through reverse genetics. We further demonstrated that two of the nsP3 ts mutants were attenuated for virulence in mice but could elicit protective immunity against challenge with wild-type VEEV. The recombinant ts mutants will be valuable tools for further studies of VEEV replication and virulence. Moreover, the method that we developed is applicable for generating such tools for any virus with a robust reverse genetics system

    The role of unintegrated DNA in HIV infection

    Get PDF
    Integration of the reverse transcribed viral genome into host chromatin is the hallmark of retroviral replication. Yet, during natural HIV infection, various unintegrated viral DNA forms exist in abundance. Though linear viral cDNA is the precursor to an integrated provirus, increasing evidence suggests that transcription and translation of unintegrated DNAs prior to integration may aid productive infection through the expression of early viral genes. Additionally, unintegrated DNA has the capacity to result in preintegration latency, or to be rescued and yield productive infection and so unintegrated DNA, in some circumstances, may be considered to be a viral reservoir. Recently, there has been interest in further defining the role and function of unintegrated viral DNAs, in part because the use of anti-HIV integrase inhibitors leads to an abundance of unintegrated DNA, but also because of the potential use of non-integrating lentiviral vectors in gene therapy and vaccines. There is now increased understanding that unintegrated viral DNA can either arise from, or be degraded through, interactions with host DNA repair enzymes that may represent a form of host antiviral defence. This review focuses on the role of unintegrated DNA in HIV infection and additionally considers the potential implications for antiviral therapy
    corecore