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Abstract. In practice, self-compacting concrete (SCC) is considered as a simple 

extension of conventional vibrated concrete (CVC) when pumping is concerned. 

The same equipment, materials, pumping procedures and guidelines used for CVC 

are applied when pumping SCC. On the other hand, it has been clearly shown that 

the rheological properties and the mix design of SCC are different than CVC. Can 

the same pumping principles employed for CVC be applied for SCC? This paper 

compares the some published results of pumping of CVC with those for SCC. A 

first striking difference between pumping of CVC and SCC is the flow behaviour 

in the pipes. The flow of CVC is a plug, surrounded by a lubricating layer, while 

during the flow of SCC, part of the concrete volume itself is sheared inside the 

pipe. As a result, the importance of viscosity increases in case of SCC. Due to the 

low yield stress of SCC, the behaviour in bends is different, but quite complex to 

study. Due to the lower content of aggregate and better stability of SCC, as it is 

less prone to internal water migration, blocking is estimated to occur at lower 

frequency in case of SCC.  

 

 

Introduction 
 

Pumping of concrete is a worldwide applied casting method enabling fast and 

efficient concrete placement. For conventional vibrated concrete (CVC), the results 

of scientific investigations and practical guidelines can be easily found in literature 

[1-4], while for self-compacting concrete (SCC), the number of investigations 

published is quite restricted [5-7]. On the contrary, SCC is largely applied in the 

concrete industry and is often placed by means of pumping. In practice, it is 

assumed that pumping of SCC is similar to pumping of CVC, and that the same 
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rules would apply. On the other hand, SCC is a different concrete with a different 

composition and rheological behaviour [7, 8]. Therefore, it is important to know if 

the rules for CVC would apply for SCC. 

 

This paper compares the literature results for pumping of CVC with the results 

obtained during a research project on pumping of SCC. It will point out the main 

differences in mix design and rheological properties between the two concrete 

types and the consequences of these differences on the main parameters 

influencing the pumping pressure. 

 

 

Experiments on SCC 

 
Test setup 

 

Pumping experiments on SCC were conducted with a truck-mounted piston pump, 

having two cylinders alternately pushing concrete inside the pipeline and pulling 

concrete from the reservoir of the pump. A powerful valve in the pump switches 

the connection between the pipes and the cylinders when the pushing cylinder is 

empty and the pulling cylinder is full. The output discharge rate of the pump could 

be varied over 10 different steps from the lowest step: 4-5 l/s (defined as step 1) to 

the highest step: 40 l/s (step 10). During the experiments, the maximum discharge 

rate was restricted to 19-20 l/s (step 5) for safety reasons.  

 

Behind the pump, two different types of loop circuits were installed using steel 

pipes with an inner diameter of 106 mm: a short circuit with a length of 

approximately 25 m (Figure 1), and long circuits with lengths varying between 80 

and 105 m. In both types of circuits, the pressure loss was measured in a straight 

horizontal section by means of two pressure sensors, located approximately 10 m 

from each other. As a back-up for the each pressure sensor, three strain gauges 

were attached to the outer wall of the pipe. As pipe deformation can be related to 

the occurring pressure [1], strain gauges were also attached to the pipe walls in 

other locations than the pressure sensors to monitor pressure evolution in the long 

circuits, including sections containing a bend. 

 

As the theoretical volume of a pumping cylinder is 83.1 liter, the discharge rate 

was determined indirectly by measuring the time between two changes of the 

pumping valve, which corresponds to the contents of one pumping cylinder. This 

measuring method was verified by pumping the concrete present inside a full 

cylinder into a reservoir suspended with a load cell to a rolling bridge. By 

measuring the variations of the mass of the concrete discharged into the reservoir 

with time, the discharge rate was calculated. Both measurement methods were 

shown to deliver similar discharge rates. 
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Figure 1. Short pumping circuit (25 m). 

 

Testing procedure 

 

As the volume of concrete required for the pumping tests was 1.5 and 3.25 m
3
 for 

the short and long circuits, respectively, the concrete was prepared in a ready-mix 

plant and delivered to the laboratory in a time span of approximately 45 min. After 

filling the pipe with concrete over 10 min for the short circuit, the first test could 

be started around 60 min following water-cement contact. For the long circuits, the 

quantity of priming mortar appeared to be insufficient to avoid blocking during the 

filling of the pipes and consequently, the first test was started at later concrete 

ages: between 1 and 2 hours. The tests on fresh concrete indicate that even at this 

age, the concrete still has self-compacting properties. 

 

The testing procedure consisted of pumping the concrete at the five lowest 

available discharge rates, in a descending order (steps 5 to 1) and maintaining each 

discharge rate for five full strokes (Figure 2). In this way, pressure loss, measured 

as the pressure difference between the two pressure sensors divided by the 

separation distance, vs. discharge rate curve could be obtained in relatively short 

period (4 min). This procedure was repeated at 30-min intervals until the 

workability of the concrete decreased below the SCC level. Simultaneously to the 

pumping experiment, rheological properties of the SCC were determined using a 

Tattersall Mk-II rheometer [7, 9] in addition to standard characterization of SCC 

workability (slump flow, V-funnel and sieve stability in addition to unit weight and 

air content). 
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Figure 2. Upstream pressure variation with time, clearly indicating the five 

different discharge rate steps. 

 

 

Concrete composition 

 

In total, 19 different concrete mixtures were produced for the pumping tests. The 

mixture proportioning of these concretes are given in Table I. Most of the mixtures 

were prepared using ordinary high strength Portland cement (CEM I with 52.5 

MPa cement strength at 28 days), limestone filler, natural sand, rounded river-bed 

gravel with maximal size of 16 mm and polycarboxyl-ether superplasticizer with a 

long workability retention. As can be seen in Table I, the mixture proportioning is 

based on the powder-type method for SCC mix design [8]. Four of the concrete 

mixtures were commercial products supplied by the ready-mix concrete producer. 

Mixtures SCC 14-17 were pumped in the long circuits, the others were used in the 

short circuit. 
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Table I. Concrete compositions. 

 
Composition 

[kg/m3] 
SCC 0 SCC 1 SCC 2 SCC 3 SCC 4 SCC 5 SCC 6 SCC 7 SCC 8 CVC 1 

Gravel 8/16 

C
o

m
m

er
ci

al
 m

ix
tu

re
 434 434 434 459 434 434 434 434 

C
o

m
m

er
ci

al
 m

ix
tu

re
 

Gravel 2/8 263 263 263 278 263 263 263 263 

Sand 0/5 853 853 853 901 853 853 853 853 

CEM I 52.5 N 360 360 360 300 360 360 360 360 

Limestone 
Filler 

239 239 239 200 239 239 239 239 

Water 165 165 165 165 165 165 165 165 

SP [l/m3] 11 11 15.22 12.16 20.95 13.33 12.69 14.44 

Initial SF [mm] 740 640 720 690 710 710 720 650 680 190* 

 

Composition 

[kg/m3] 
SCC 9 SCC 10 SCC 11 SCC 12 SCC 13 SCC 14 SCC 15 SCC 16 SCC 17 

Gravel 8/16 410 434 410 434 434 434 

C
o

m
m

er
ci

al
 m

ix
tu

re
 434 

C
o

m
m

er
ci

al
 m

ix
tu

re
 

Gravel 2/8 248 263 248 263 263 263 263 

Sand 0/5 805 853 805 853 853 853 853 

CEM I 52.5 N 400 360 400 360 360 360 360 

Limestone 

Filler 
300 239 300 239 239 239 239 

Water 165 165 165 165 165 160 165 

SP [l/m3] 18.15 11    21.9  

Initial SF [mm] 850 800 700 675 700 640 650 700 700 

*slump 

 

 

Comparison between CVC and SCC 

 
Mix design and rheological properties 

 

As stated in the previous sections, the mix design of SCC differs from CVC in 

order to enhance the flowability, reduce blocking due to accumulation of 

aggregates and avoid segregation. The amount of coarse aggregates in SCC is 

reduced and the viscosity of the concrete is increased by means of viscosity-

modifying agents (VMA), or by increasing the amount of fine particles in the 

concrete, or by combining both. In this experimental project, the powder-type 

method was applied, by adding limestone filler to the concrete.  

 

The rheological behaviour of fresh concrete is mostly described by means of the 

Bingham model (defining a yield stress and a plastic viscosity) [9-11], when 

transient behaviour, like thixotropy is not considered [11]. As generally known, 

SCC has a low yield stress, resulting in a high slump value [12]. The order of 

magnitude for the yield stress is between 10 and 100 Pa for SCC, while it can 

achieve several thousands of Pascals for CVC. For “pumpable” conventional 

vibrated concrete, the yield stress roughly varies between 100 and 1000 Pa [1]. The 

viscosity of SCC is increased by means of VMA or an additional amount of small 
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particles to prevent segregation of the coarse aggregates. As a result, the viscosity 

of SCC is generally higher than the viscosity of CVC. 

 

Behaviour law in pipes 

 
The movement of concrete in pipes can be determined by two physical processes: 

flow or friction [1, 13]. In case friction is negligible, the deformation of concrete in 

pipes occurs according to the hydrodynamic laws, and as concrete has a high 

viscosity, the occurrence of turbulence in straight sections is quite rare. As a result, 

the flow is laminar, and rheological principals for dense suspensions can be 

applied. 

 

The pressure gradient during pumping does not only push the concrete through the 

pipeline, but also tends to move the water among the granular skeleton [13]. In this 

case, the water content is no longer homogeneous along the conveying pipeline and 

in zones suffering a reduction in water, the stress is no longer transferred through 

the liquid, but by friction among aggregates. Browne and Bamforth examined both 

behaviour laws for the movement of concrete in pipes and concluded that the 

frictional behaviour causes a significantly higher pressure to pump the concrete, 

compared to the hydrodynamic behaviour [13]. Also in practice, “pumpable” CVC 

contains relatively large amount of fine particles to reduce friction, and stable 

concrete is less prone to friction than unstable mixtures. 

 

As discussed in the previous section, special care is taken to avoid segregation in 

case of SCC, by adding VMA or more fine particles [8]. In theory, SCC should 

flow in the pipes according to hydrodynamic laws, which is confirmed by the 

conducted experiments. No blocking was observed during regime conditions (after 

insertion), even when a segregating concrete was fed into the pump (SCC 9 and 

10). During the start-up of pumping, on the other hand, the experiments on the long 

circuits indicate a large amount of blockings due to a lack of fine particles at the 

concrete front, causing friction between coarse aggregate particles. The amount of 

fine particles at the concrete front decreases, as they stick to the pipe wall to 

lubricate the concrete and as they need to fill the space in the rubber seals installed 

in the connections between the pipes. Blocking during start-up was reported by 

Kaplan as the most frequent blocking occurrence [1] and can be prevented by 

inserting a priming mortar in the pipes before the pumping of concrete starts. 

 

Flow in straight sections – velocity profile 

 

In order to estimate the velocity profile of different types of concrete flowing 

through pipes, the theoretical framework for laminar flow in cylindrical pipes will 

be introduced, which is known as the Poiseuille formula in case of Newtonian 

liquids. The shear stress at the wall of the pipe is related to the pressure loss by 

equilibrium of forces (Eqn. (1)): 
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2/Rpw                                                           (1) 

 

where: w = wall shear stress (Pa) 

 p = pressure loss per unit of length (Pa/m) 

 R = radius of the pipe (m) 

 

The shear stress varies linearly with the pipe radius, from zero in the center, to the 

maximum value at the wall ( w). Incorporating the rheological behaviour law into 

the shear stress profile delivers the shear rate distribution, which can be integrated 

to obtain the velocity profile. The presence of a yield stress causes a zone with zero 

shear rate in the center, resulting in a constant velocity, also known as the plug. 

The larger the yield stress, the larger the plug radius and in the limit, no flow 

should occur if the wall shear stress is equal to or smaller than the yield stress of 

the concrete. As the yield stress of CVC is quite high, this would result in elevated 

pressure to start the flow of CVC. In order to facilitate its movement in pipes, 

concrete creates a water-cement layer of lower rheological properties near the wall 

[1-2]. As a result, the concrete can move much faster through the pipes and flow is 

observed even if the wall shear stress is lower than the yield stress of the bulk 

concrete. 
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Figure 3. Distinction between pure plug flow with a lubrication layer (zone 1) and 

plug flow with a lubrication layer and partly sheared concrete (zone 2), based on 

pressure loss – discharge rate curve. (Q1, P1) represents the theoretical point where 

the wall shear stress equals the concrete yield stress. Figure after Kaplan [1]. 
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Kaplan made a distinction between two different types of velocity profiles of the 

pressure loss – discharge rate curve, as can be seen in Figure 3 [1]. In zone 1, on 

the left side, the pumping parameters are only governed by the properties of the 

lubrication layer, as the wall shear stress is lower than the concrete yield stress. In 

zone 2, the flow parameters are governed by both the properties of the lubrication 

layer and the properties of the concrete. The velocity profile in zone 1 consists of a 

plug (constant velocity) and a large velocity gradient near the wall due to the 

lubrication layer [1, 2], while in zone 2, the velocity profile consists of a plug, a 

large velocity gradient near the wall and a smaller velocity gradient in between, 

because the concrete itself is also sheared [1, 7]. Conventional concrete has a rather 

high yield stress and in most cases is situated in zone 1, while SCC has a rather 

low yield stress, and is mostly situated in zone 2. 

 

SCC also creates a lubrication layer near the wall during pumping, as the 

theoretical framework delivers significantly larger pressure losses at a certain 

discharge rate, compared to the experiments [7]. On the other hand, as the yield 

stress is low, a large part of the concrete is sheared, and a good relationship 

between the viscosity of the concrete and pressure loss can be established. This 

relationship is dependent on the discharge rate (Figure 4).  
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Figure 4. Variations of pressure loss with plastic viscosity of SCC determined at 

different discharge rates. 
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Note that these results are empirical and the relationship will change with varying 

discharge rate and pipe diameter. On the other hand, it is clearly shown that 

viscosity of SCC, rather than the yield stress, is the main factor influencing 

pressure loss. Such pressure loss corresponds to the required pumping pressure. 

Further research should be carried out to identify the relative importance of the 

lubrication layer for pumping SCC. 

 

Pressure loss in bends 

 

As in case for pure water, existing literature delivers non-conclusive results 

regarding pressure loss in bends of pipelines for CVC. For example, Kaplan [1] 

and Chapdelaine [2] did not observe any noticeable additional pressure losses in 

bends in during their field pumping experiments, while practical guides for 

pumping introduce the concept of equivalent length to account for the presence of 

bends in pumplines [3, 4]: e.g. one bend of 90° is equivalent to 3 m of straight 

pipes [4]. 

 

For SCC flowing in bends, an additional pressure loss was observed during the 

pumping experiments in the long circuits, which appears to be larger compared to 

CVC. It is important to note that the large scatter of the results prevents accurate 

conclusion on the level of increase in pressure loss in bends [7]. As the concrete 

flow needs to change direction across a bend, it is estimated that pressure loss in 

bends is influenced by a large number of parameters, including viscosity, inertia, 

coarse aggregate properties, bending radius and helicoidal flow velocity. As a 

result, further research is needed to capture these phenomena in details in order to 

develop guidelines and models that can take into account flow of SCC in bends. 

 

 

Conclusions 
 

By means of the results available in literature for CVC and experimental research 

project on pumping of SCC, comparison between pumping of CVC and SCC was 

made. The velocity profile for CVC flowing through pipes is composed of a 

lubrication layer with a large velocity gradient and a plug in which the velocity is 

constant. For SCC, the radius of the plug is much smaller than for CVC, and a 

smaller velocity gradient is present between the lubrication layer and the plug. As a 

result, a part of the concrete volume is also sheared in the pipes. The pumping 

parameters for CVC depend mainly on the properties of the lubrication layer, while 

for SCC, a good relationship between concrete viscosity and pressure loss was 

established. The flow in bends is complicated leading to non-conclusive results for 

both CVC and SCC. Further research is required to clarify the influencing factors. 
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