509 research outputs found

    Quasiparticle band structure based on a generalized Kohn-Sham scheme

    Full text link
    We present a comparative full-potential study of generalized Kohn-Sham schemes (gKS) with explicit focus on their suitability as starting point for the solution of the quasiparticle equation. We compare G0W0G_0W_0 quasiparticle band structures calculated upon LDA, sX, HSE03, PBE0, and HF functionals for exchange and correlation (XC) for Si, InN and ZnO. Furthermore, the HSE03 functional is studied and compared to the GGA for 15 non-metallic materials for its use as a starting point in the calculation of quasiparticle excitation energies. For this case, also the effects of selfconsistency in the GWGW self-energy are analysed. It is shown that the use of a gKS scheme as a starting point for a perturbative QP correction can improve upon the deficiencies found for LDA or GGA staring points for compounds with shallow dd bands. For these solids, the order of the valence and conduction bands is often inverted using local or semi-local approximations for XC, which makes perturbative G0W0G_0W_0 calculations unreliable. The use of a gKS starting point allows for the calculation of fairly accurate band gaps even in these difficult cases, and generally single-shot G0W0G_0W_0 calculations following calculations using the HSE03 functional are very close to experiment

    GW band structure of InAs and GaAs in the wurtzite phase

    Full text link
    We report the first quasiparticle calculations of the newly observed wurtzite polymorph of InAs and GaAs. The calculations are performed in the GW approximation using plane waves and pseudopotentials. For comparison we also report the study of the zinc-blende phase within the same approximations. In the InAs compound the In 4d electrons play a very important role: whether they are frozen in the core or not, leads either to a correct or a wrong band ordering (negative gap) within the Local Density Appproximation (LDA). We have calculated the GW band structure in both cases. In the first approach, we have estimated the correction to the pd repulsion calculated within the LDA and included this effect in the calculation of the GW corrections to the LDA spectrum. In the second case, we circumvent the negative gap problem by first using the screened exchange approximation and then calculating the GW corrections starting from the so obtained eigenvalues and eigenfunctions. This approach leads to a more realistic band-structure and was also used for GaAs. For both InAs and GaAs in the wurtzite phase we predict an increase of the quasiparticle gap with respect to the zinc-blende polytype.Comment: 9 pages, 6 figures, 3 table

    Coarsened Lattice Spatial Disorder in the Thermodynamic Limit

    Full text link
    In this Rapid Research Note the application of recently introduced [Physica A 277 (2000) 157] entropic measure S_Delta of spatial disorder for systems of finite-sized objects is presented. In the thermodynamic limit the critical behaviour of coarsened lattice model of random two-phase systems is illustrated for certain grain size distributions (GSDs) and chosen parameters. Also the changes of spatial disorder, quantified by S_Delta, between the limit GSDs clearly show that the topological equivalence of the two phases is broken.Comment: 3 pages, 1 figur

    Anomalous Angular Dependence of the Dynamic Structure Factor near Bragg Reflections: Graphite

    Get PDF
    The electron energy-loss function of graphite is studied for momentum transfers q beyond the first Brillouin zone. We find that near Bragg reflections the spectra can change drastically for very small variations in q. The effect is investigated by means of first principle calculations in the random phase approximation and confirmed by inelastic x-ray scattering measurements of the dynamic structure factor S(q,\omega). We demonstrate that this effect is governed by crystal local field effects and the stacking of graphite. It is traced back to a strong coupling between excitations at small and large momentum transfers

    ZnSe/GaAs(001) heterostructures with defected interfaces: structural, thermodynamic and electronic properties

    Full text link
    We have performed accurate \emph{ab--initio} pseudopotential calculations for the structural and electronic properties of ZnSe/GaAs(001) heterostructures with interface configurations accounting for charge neutrality prescriptions. Beside the simplest configurations with atomic interdiffusion we consider also some configurations characterized by As depletion and cation vacancies, motivated by the recent successfull growth of ZnSe/GaAs pseudomorphic structures with minimum stacking fault density characterized by the presence of a defected (Zn,Ga)Se alloy in the interface region. We find that--under particular thermodynamic conditions--some defected configurations are favoured with respect to undefected ones with simple anion or cation mixing, and that the calculated band offsets for some defected structures are compatible with those measured. Although it is not possible to extract indications about the precise interface composition and vacancy concentration, our results support the experimental indication of (Zn,Ga)Se defected compounds in high-quality ZnSe/GaAs(001) heterojunctions with low native stacking fault density. The range of measured band offset suggests that different atoms at interfaces rearrange, with possible presence of vacancies, in such a way that not only local charges but also ionic dipoles are vanishing.Comment: 26 pages. 5 figures, revised version, in press (Physical Review B

    Structural Examination of Au/Ge(001) by Surface X-Ray Diffraction and Scanning Tunneling Microscopy

    Full text link
    The one-dimensional reconstruction of Au/Ge(001) was investigated by means of autocorrelation functions from surface x-ray diffraction (SXRD) and scanning tunneling microscopy (STM). Interatomic distances found in the SXRD-Patterson map are substantiated by results from STM. The Au coverage, recently determined to be 3/4 of a monolayer of gold, together with SXRD leads to three non-equivalent positions for Au within the c(8x2) unit cell. Combined with structural information from STM topography and line profiling, two building blocks are identified: Au-Ge hetero-dimers within the top wire architecture and Au homo-dimers within the trenches. The incorporation of both components is discussed using density functional theory and model based Patterson maps by substituting Germanium atoms of the reconstructed Ge(001) surface.Comment: 5 pages, 3 figure

    Statistical Model Applied To Ax By C1-x-y D Quaternary Alloys: Bond Lengths And Energy Gaps Of Alx Gay In1-x-y X (x=as, P, Or N) Systems

    Get PDF
    We extend the generalized quasichemical approach (GQCA) to describe the Ax By C1-x-y D quaternary alloys in the zinc-blende structure. Combining this model with ab initio ultrasoft pseudopotential calculations within density functional theory, the structural and electronic properties of Alx Gay In1-x-y X (X=As, P, or N) quaternary alloys are obtained, taking into account the disorder and composition effects. Results for the bond lengths show that the variation with the compositions is approximately linear and also does not deviate very much from the value of the corresponding binary compounds. The maximum variation observed amounts to 3.6% for the In-N bond length. For the variation of band gap, we obtain a bowing parameter b=0.26 eV for the (Ga0.47 In0.53 As)z (Al0.48 In0.52 As)1-z quaternary alloy lattice matched to InP, in very good agreement with experimental data. In the case of AlGaInN, we compare our results for the band gap to data for the wurtzite phase. We also obtained a good agreement despite all evidences for cluster formation in this alloy. Finally, a bowing parameter of 0.22 eV is obtained for zinc-blende AlGaInN lattice matched with GaN. © 2006 The American Physical Society.7323Li, J., Nam, K.B., Kim, K.H., Lin, J.Y., Jiang, H.X., (2001) Appl. Phys. Lett., 78, p. 61. , APPLAB 0003-6951 10.1063/1.1331087Adivarahan, V., Chitnis, A., Zhang, J.P., Shatalov, M., Yang, J.W., Simin, G., Asif Khan, M., Shur, M.S., (2001) Appl. Phys. Lett., 79, p. 4240. , APPLAB 0003-6951 10.1063/1.1425453Yasan, A., McClintock, R., Mayes, K., Darvish, S.R., Kung, P., Razegui, M., (2002) Appl. Phys. Lett., 81, p. 801. , APPLAB 0003-6951 10.1063/1.1497709Nagahama, S., Yanamoto, T., Sano, M., Mukai, T., (2001) Jpn. J. Appl. Phys., Part 1, 40, p. 788. , JAPNDE 0021-4922 10.1143/JJAP.40.L788Fujii, T., Nakata, Y., Sigiyama, Y., Hiyiamizu, S., (1986) Jpn. J. Appl. Phys., 25, p. 254. , JAPLD8 0021-4922Olego, D., Chang, T.Y., Silberg, E., Caridi, E.A., Pinczuk, A., (1982) Appl. Phys. Lett., 41, p. 476. , APPLAB 0003-6951 10.1063/1.93537Hirayama, H., Kinoshita, A., Yamabi, T., Enomoto, Y., Hirata, A., Araki, T., Nanishi, Y., Aoyagi, Y., (2002) Appl. Phys. Lett., 80, p. 207. , APPLAB 0003-6951 10.1063/1.1433162Takayama, T., Yuri, M., Itoh, K., Baba, T., Harris Jr., J.S., (2001) J. Cryst. Growth, 222, p. 29. , JCRGAE 0022-0248 10.1016/S0022-0248(00)00869-1Koukitu, A., Kumegai, Y., Seki, H., (2000) J. Cryst. Growth, 221, p. 743. , JCRGAE 0022-0248Feng, S.-W., Cheng, Y.-C., Chung, Y.-Y., Yang, C.C., Ma, K.-J., Yan, C.-C., Hsu, C., Jiang, H.X., (2003) Appl. Phys. Lett., 82, p. 1377. , APPLAB 0003-6951 10.1063/1.1556965Chen, C.H., Chen, Y.F., Lan, Z.H., Chen, L.C., Chen, K.H., Jiang, H.X., Lin, J.Y., (2004) Appl. Phys. Lett., 84, p. 1480. , APPLAB 0003-6951 10.1063/1.1650549Marques, M., Teles, L.K., Scolfaro, L.M.R., Ferreira, L.G., Leite, J.R., (2004) Phys. Rev. B, 70, p. 073202. , PRBMDO 0163-1829 10.1103/PhysRevB.70.073202Marques, M., Ferreira, L.G., Teles, L.K., Scolfaro, L.M.R., (2005) Phys. Rev. B, 71, p. 205204. , PRBMDO 0163-1829 10.1103/PhysRevB.71.205204Teles, L.K., Furthmüller, J., Scolfaro, L.M.R., Leite, J.R., Bechstedt, F., (2000) Phys. Rev. B, 62, p. 2475. , PRBMDO. 0163-1829. 10.1103/PhysRevB.62.2475Teles, L.K., Scolfaro, L.M.R., Leite, J.R., Furthmüller, J., Bechstedt, F., (2002) J. Appl. Phys., 92, p. 7109. , JAPIAU. 0021-8979. 10.1063/1.1518136Teles, L.K., Furthmüller, J., Scolfaro, L.M.R., Leite, J.R., Bechstedt, F., (2001) Phys. Rev. B, 63, p. 085204. , PRBMDO. 0163-1829. 10.1103/PhysRevB.63.085204Teles, L.K., Scolfaro, L.M.R., Leite, J.R., Furthmüller, J., Bechstedt, F., (2002) Appl. Phys. Lett., 80, p. 1177. , APPLAB. 0003-6951. 10.1063/1.1450261Tabata, A., Teles, L.K., Scolfaro, L.M.R., Leite, J.R., Kharchenko, A., Frey, T., As, D.J., Bechstedt, F., (2002) Appl. Phys. Lett., 80, p. 769. , APPLAB. 0003-6951. 10.1063/1.1436270Connolly, J.W.D., Williams, A.R., (1983) Phys. Rev. B, 27, p. 5169. , PRBMDO 0163-1829 10.1103/PhysRevB.27.5169Chen, A.-B., Sher, A., (1995) Semiconductor Alloys, , Plenum Press, New YorkKresse, G., Furthmüller, J., (1996) Comput. Mater. Sci., 6, p. 15. , CMMSEM. 0927-0256. 10.1016/0927-0256(96)00008-0Kresse, G., Furthmüller, J., (1996) Phys. Rev. B, 54, p. 11169. , PRBMDO. 0163-1829. 10.1103/PhysRevB.54.11169Hohenberg, P., Kohn, W., (1964) Phys. Rev., 136, p. 864. , PRVBAK 0096-8269 10.1103/PhysRev.136.B864Kohn, W., Sham, L.J., (1965) Phys. Rev., 140, p. 1133. , PRVAAH 0096-8250 10.1103/PhysRev.140.A1133Vanderbilt, D., (1990) Phys. Rev. B, 41, p. 7892. , PRBMDO 0163-1829 10.1103/PhysRevB.41.7892Perdew, J.P., Zunger, A., (1981) Phys. Rev. B, 23, p. 5048. , PRBMDO 0163-1829 10.1103/PhysRevB.23.5048Monkhorst, H.J., Pack, J.D., (1976) Phys. Rev. B, 13, p. 5188. , PLRBAQ 0556-2805 10.1103/PhysRevB.13.5188Marques, M., Teles, L.K., Scolfaro, L.M.R., Leite, J.R., Furthmüller, J., Bechstedt, F., (2003) Appl. Phys. Lett., 83, p. 890. , APPLAB. 0003-6951. 10.1063/1.1597986Jeffs, N.J., Blant, A.V., Cheng, T.S., Foxon, C.T., Bailey, C., Harrison, P.G., Mosselmans, J.F.W., Dent, A.J., (1998) Mater. Res. Soc. Symp. Proc., 512, p. 519. , MRSPDH 0272-9172Miyano, K.E., Woicik, J.C., Robins, L.H., Bouldin, C.E., Wickenden, D.K., (1997) Appl. Phys. Lett., 70, p. 2108. , APPLAB 0003-6951 10.1063/1.118963Saito, T., Arakawa, Y., (1999) Phys. Rev. B, 60, p. 1701. , PRBMDO 0163-1829 10.1103/PhysRevB.60.1701Sze, S.M., (1981) Physics of Semiconductor Devices, , Wiley, New YorkChen, S.-G., Fan, X.-Q., (1997) J. Phys.: Condens. Matter, 9, p. 3151. , JCOMEL 0953-8984 10.1088/0953-8984/9/15/008Sökeland, F., Rohlfing, M., Krüger, P., Pollmann, J., (2003) Phys. Rev. B, 68, p. 075203. , PRBMDO. 0163-1829. 10.1103/PhysRevB.68.075203Schörmann, J., Potthast, S., Schnietz, M., Li, S.F., As, D.J., Lischka, K., Phys. Status Solidi C, , ZZZZZZ. 1610-1634 (to be published)Yu. Davydov, V., Klochikhin, A.A., Seisyan, R.P., Emtsev, V.V., Ivanov, S.V., Bechstedt, F., Furthmüller, J., Graul, J., (2002) Phys. Status Solidi B, 229, p. 1. , PSSBBD. 0370-1972. 10.1002/1521-3951(200202)229:33.0.CO;2-OYu. Davydov, V., Klochikhin, A.A., Emtsev, V.V., Kurdyukov, D.A., Ivanov, S.V., Vekshin, V.A., Bechstedt, F., Haller, E.E., (2002) Phys. Status Solidi B, 234, p. 787. , PSSBBD. 0370-1972. 10.1002/1521-3951(200212)234:33.0.CO;2-HBechstedt, F., Furthmüller, J., Ferhat, M., Teles, L.K., Scolfaro, L.M.R., Leite, J.R., Yu. Davydov, V., Goldhahn, R., (2003) Phys. Status Solidi a, 195, p. 628. , PSSABA. 0031-8965. 10.1002/pssa.200306164(1998) Gallium Nitride (GaN) I and II, Semiconductors and Semimetals, 50. , edited by J. I. Pankove and T. D. Moustakas, Vol. Academic Press, New York(1999), 57. , ibid. Vol. Academic Press, New YorkNadja, S.P., Kean, A.H., Dawson, M.D., Duggan, G., (1995) J. Appl. Phys., 77, p. 3412. , JAPIAU 0021-8979 10.1063/1.358631McIntosh, F.G., Boutros, K.S., Roberts, J.C., Bedair, S.M., Piner, E.L., El-Masry, N.A., (1996) Appl. Phys. Lett., 68, p. 40. , APPLAB 0003-6951 10.1063/1.116749Ryu, M.-Y., Chen, C.Q., Kuokstis, E., Yang, J.W., Simin, G., Khan, M.A., W. Yu, S.P., (2002) Appl. Phys. Lett., 80, p. 3943. , APPLAB 0003-6951 10.1063/1.1482415Yamaguchi, S., Kariya, M., Nitta, S., Kato, H., Takeuchi, T., Wetzel, C., Amano, H., Akasaki, I., (1998) J. Cryst. Growth, 195, p. 309. , JCRGAE 0022-0248 10.1016/S0022-0248(98)00629-0Davies, J.I., Marshall, A.C., Scott, M.D., Griffiths, R.J.M., (1988) Appl. Phys. Lett., 53, p. 276. , APPLAB 0003-6951 10.1063/1.100593Kopf, R.F., Wei, H.P., Perley, A.P., Livescu, G., (1992) Appl. Phys. Lett., 60, p. 2386. , APPLAB 0003-6951 10.1063/1.107005Cury, L.A., Beerens, J., Praseuth, J.P., (1993) Appl. Phys. Lett., 63, p. 1804. , APPLAB 0003-6951 10.1063/1.110668Böhrer, J., Krost, A., Bimberg, D.B., (1993) Appl. Phys. Lett., 63, p. 1918. , APPLAB. 0003-6951. 10.1063/1.110648Fan, J.C., Chen, Y.F., (1996) J. Appl. Phys., 80, p. 1239. , JAPIAU 0021-8979 10.1063/1.362862Vurgaftman, I., Meyer, J.R., Ram-Mohan, L.R., (2001) J. Appl. Phys., 89, p. 5815. , JAPIAU 0021-8979 10.1063/1.1368156Han, J., Figiel, J.J., Petersen, G.A., Myers, S.M., Crawford, M.H., Banas, M.A., (2000) Jpn. J. Appl. Phys., Part 1, 39, p. 2372. , JAPNDE 0021-4922 10.1143/JJAP.39.2372Aumer, M.E., Leboeuf, S.F., McIntosh, F.G., Bedair, S.M., (1999) Appl. Phys. Lett., 75, p. 3315. , APPLAB 0003-6951 10.1063/1.12533

    Ab-initio calculation of optical absorption in semiconductors: A density-matrix description

    Full text link
    We show how to describe Coulomb renormalization effects and dielectric screening in semiconductors and semiconductor nanostructures within a first-principles density-matrix description. Those dynamic variables and approximation schemes which are required for a proper description of dielectric screening are identified. It is shown that within the random-phase approximation the direct Coulomb interactions become screened, with static screening being a good approximation, whereas the electron-hole exchange interactions remain unscreened. Differences and similarities of our results with those obtained from a corresponding GW approximation and Bethe-Salpeter equation Green's function analysis are discussed.Comment: 10 pages, to be published in Physical Review
    corecore