353 research outputs found
Vulnerability of weighted networks
In real networks complex topological features are often associated with a
diversity of interactions as measured by the weights of the links. Moreover,
spatial constraints may as well play an important role, resulting in a complex
interplay between topology, weight, and geography. In order to study the
vulnerability of such networks to intentional attacks, these attributes must be
therefore considered along with the topological quantities. In order to tackle
this issue, we consider the case of the world-wide airport network, which is a
weighted heterogeneous network whose evolution and structure are influenced by
traffic and geographical constraints. We first characterize relevant
topological and weighted centrality measures and then use these quantities as
selection criteria for the removal of vertices. We consider different attack
strategies and different measures of the damage achieved in the network. The
analysis of weighted properties shows that centrality driven attacks are
capable to shatter the network's communication or transport properties even at
very low level of damage in the connectivity pattern. The inclusion of weight
and traffic therefore provides evidence for the extreme vulnerability of
complex networks to any targeted strategy and need to be considered as key
features in the finding and development of defensive strategies
The Swiss Board Directors Network in 2009
We study the networks formed by the directors of the most important Swiss
boards and the boards themselves for the year 2009. The networks are obtained
by projection from the original bipartite graph. We highlight a number of
important statistical features of those networks such as degree distribution,
weight distribution, and several centrality measures as well as their
interrelationships. While similar statistics were already known for other board
systems, and are comparable here, we have extended the study with a careful
investigation of director and board centrality, a k-core analysis, and a
simulation of the speed of information propagation and its relationships with
the topological aspects of the network such as clustering and link weight and
betweenness. The overall picture that emerges is one in which the topological
structure of the Swiss board and director networks has evolved in such a way
that special actors and links between actors play a fundamental role in the
flow of information among distant parts of the network. This is shown in
particular by the centrality measures and by the simulation of a simple
epidemic process on the directors network.Comment: Submitted to The European Physical Journal
On embeddings of CAT(0) cube complexes into products of trees
We prove that the contact graph of a 2-dimensional CAT(0) cube complex of maximum degree can be coloured with at most
colours, for a fixed constant . This implies
that (and the associated median graph) isometrically embeds in the
Cartesian product of at most trees, and that the event
structure whose domain is admits a nice labeling with
labels. On the other hand, we present an example of a
5-dimensional CAT(0) cube complex with uniformly bounded degrees of 0-cubes
which cannot be embedded into a Cartesian product of a finite number of trees.
This answers in the negative a question raised independently by F. Haglund, G.
Niblo, M. Sageev, and the first author of this paper.Comment: Some small corrections; main change is a correction of the
computation of the bounds in Theorem 1. Some figures repaire
Relationships between Arctic sea ice drift and strength modelled by NEMO-LIM3.6
Sea ice cover and thickness have substantially decreased in the Arctic Ocean since the beginning of the satellite era. As a result, sea ice strength has been reduced, allowing more deformation and fracturing and leading to increased sea ice drift speed. We use the version 3.6 of the global oceanâsea ice NEMO-LIM model (Nucleus for European Modelling of the Ocean coupled to the Louvain-la-Neuve sea Ice Model), satellite, buoy and submarine observations, as well as reanalysis data over the period from 1979 to 2013 to study these relationships. Overall, the model agrees well with observations in terms of sea ice extent, concentration and thickness. The seasonal cycle of sea ice drift speed is reasonably well reproduced by the model. NEMO-LIM3.6 is able to capture the relationships between the seasonal cycles of sea ice drift speed, concentration and thickness, with higher drift speed for both lower concentration and lower thickness, in agreement with observations. Model experiments are carried out to test the sensitivity of Arctic sea ice drift speed, thickness and concentration to changes in sea ice strength parameter P*. These show that higher values of P* generally lead to lower sea ice deformation and lower sea ice thickness, and that no single value of P* is the best option for reproducing the observed drift speed and thickness. The methodology proposed in this analysis provides a benchmark for a further model intercomparison related to the relationships between sea ice drift speed and strength, which is especially relevant in the context of the upcoming Coupled Model Intercomparison Project 6 (CMIP6).David Docquier and Antoine BarthĂ©lemy
work on the PRIMAVERA project (PRocess-based climate sIMulation: AdVances in high-resolution modelling and European
climate Risk Assessment), which is funded by the European Commissionâs Horizon 2020 programme, grant agreement no. 641727.
François Massonnet is funded by the Belgian Fonds National de la Recherche Scientifique (FNRS) and was funded by the Ministerio
de EconomĂa, Industria y Competitividad (MINECO). Neil F. Tandon is supported by the Canadian Sea Ice and Snow Evolution
(CanSISE) Network. Olivier Lecomte is a research assistant within the Belgian FNRS. The present research benefited from computational resources made available on the Tier-1 supercomputer of the FĂ©dĂ©ration Wallonie-Bruxelles, infrastructure funded by the Walloon Region under the grant agreement no. 1117545. Computational resources have also been provided by the Consortium des Ăquipements de Calcul Intensif (CĂCI), funded by the Fonds de la Recherche Scientifique de Belgique (F.R.S.-FNRS) under grant no. 2.5020.11. We would like to thank Hugues Goosse, Martin Vancoppenolle, Jonathan Raulier and VĂ©ronique Dansereau for their very helpful comments regarding this study. We also
acknowledge Pierre-Yves Barriat for his help in using computing resources at UCL and Damien François for his advice in improving
Python scripts. Finally, we thank the editor Dirk Notz and the two anonymous reviewers for helping to improve the original paper.Peer ReviewedPostprint (published version
World citation and collaboration networks: uncovering the role of geography in science
Modern information and communication technologies, especially the Internet,
have diminished the role of spatial distances and territorial boundaries on the
access and transmissibility of information. This has enabled scientists for
closer collaboration and internationalization. Nevertheless, geography remains
an important factor affecting the dynamics of science. Here we present a
systematic analysis of citation and collaboration networks between cities and
countries, by assigning papers to the geographic locations of their authors'
affiliations. The citation flows as well as the collaboration strengths between
cities decrease with the distance between them and follow gravity laws. In
addition, the total research impact of a country grows linearly with the amount
of national funding for research & development. However, the average impact
reveals a peculiar threshold effect: the scientific output of a country may
reach an impact larger than the world average only if the country invests more
than about 100,000 USD per researcher annually.Comment: Published version. 9 pages, 5 figures + Appendix, The world citation
and collaboration networks at both city and country level are available at
http://becs.aalto.fi/~rajkp/datasets.htm
Pore-scale Modeling of Viscous Flow and Induced Forces in Dense Sphere Packings
We propose a method for effectively upscaling incompressible viscous flow in
large random polydispersed sphere packings: the emphasis of this method is on
the determination of the forces applied on the solid particles by the fluid.
Pore bodies and their connections are defined locally through a regular
Delaunay triangulation of the packings. Viscous flow equations are upscaled at
the pore level, and approximated with a finite volume numerical scheme. We
compare numerical simulations of the proposed method to detailed finite element
(FEM) simulations of the Stokes equations for assemblies of 8 to 200 spheres. A
good agreement is found both in terms of forces exerted on the solid particles
and effective permeability coefficients
On the equivalence between hierarchical segmentations and ultrametric watersheds
We study hierarchical segmentation in the framework of edge-weighted graphs.
We define ultrametric watersheds as topological watersheds null on the minima.
We prove that there exists a bijection between the set of ultrametric
watersheds and the set of hierarchical segmentations. We end this paper by
showing how to use the proposed framework in practice in the example of
constrained connectivity; in particular it allows to compute such a hierarchy
following a classical watershed-based morphological scheme, which provides an
efficient algorithm to compute the whole hierarchy.Comment: 19 pages, double-colum
Solvable Metric Growing Networks
Structure and dynamics of complex networks usually deal with degree
distributions, clustering, shortest path lengths and other graph properties.
Although these concepts have been analysed for graphs on abstract spaces, many
networks happen to be embedded in a metric arrangement, where the geographic
distance between vertices plays a crucial role. The present work proposes a
model for growing network that takes into account the geographic distance
between vertices: the probability that they are connected is higher if they are
located nearer than farther. In this framework, the mean degree of vertices,
degree distribution and shortest path length between two randomly chosen
vertices are analysed
From spin liquid to magnetic ordering in the anisotropic kagome Y-Kapellasite Y3Cu9(OH)19Cl8: a single crystal study
Y3Cu9(OH)19Cl8 realizes an original anisotropic kagome model hosting a rich
magnetic phase diagram [M. Hering et al, npj Computational Materials 8, 1
(2022)]. We present an improved synthesis of large phase-pure single crystals
via an external gradient method. These crystals were investigated in details by
susceptibility, specific heat, thermal expansion, neutron scattering and local
muSR and NMR techniques. At variance with polycristalline samples, the study of
single crystals gives evidence for subtle structural instabilities at 33K and
13K which preserve the global symmetry of the system and thus the magnetic
model. At 2.1K the compound shows a magnetic transition to a coplanar (1/3,1/3)
long range order as predicted theoretically. However our analysis of the spin
wave excitations yields magnetic interactions which locate the compound closer
to the phase boundary to a classical jammed spin liquid phase. Enhanced quantum
fluctuations at this boundary may be responsible for the strongly reduced
ordered moment of the Cu2+, estimated to be 0.075muB from muSR
- âŠ