93 research outputs found

    Microseismicity and permeability enhancement of hydrogeologic structures during massive fluid injections into granite at 3 km depth at the Soultz HDR site

    Get PDF
    A high-rate injection of 20 000 m3 of water into granite between 2.8 and 3.4 km depth at the Soultz hot dry rock (HDR) test site in France in 1993 September led to a 200-fold increase in borehole transmissivity and produced a subvertical cloud of microseismicity of dimensions 0.5 km wide, 1.2 km long, 1.5 km high and oriented 25°NW. The resulting data set is unusually complete and well suited to studying permeability creation/enhancement processes in crystalline rock and the utility of microseismic data for revealing them. Although the microseismic cloud defined using joint hypocentre determination (JHD) locations was diffuse and showed little structure, application of the collapsing method showed it to be composed largely of discrete tubes and planes that propagated coherently. One prominent structure that extended 350 m downwards from the vicinity of a flow inlet early in the injection and that appears to contain a major flow path was subjected to detailed investigation to establish its hydrogeologic nature and the mechanisms underpinning its inferred permeability enhancement. High-resolution microseismic mapping techniques (i.e. multiplets and clustering) showed it to be a subvertical, NNW-SSE striking, fracture zone of width 10-20 m. The strike and scale of the structure identifies it as a member of a family of hydrothermally altered, cataclastic shear structures that constitute the primary permeable paths for fluid migration within the rock mass, both under ambient and forced fluid flow conditions. The microseismicity occurred on subvertical, small-scale fractures within the cataclastic shear zone whose azimuths scatter within 22° of parallel to the parent structure. Although the structure is likely to have been naturally permeable to some degree, its permeability appears to have been significantly enhanced as a consequence of the injection. The most likely mechanism of permeability enhancement, which is in accord with the strong preference for the microseismicity to grow downwards, involves strike-slip shearing, which produced the opening of vertical tubes at along-strike jogs in the fault (the so-called Hill mesh). Seismic moment release averaged over the structure suggests shear displacements of at least 0.3 mm occurred, which are sufficient to generate aperture changes that are hydraulically significant. The preponderance of discrete structures within the microseismic cloud after collapsing suggests that significant flow and permeability enhancement (i.e. stimulation) within the rock mass is largely confined to the interiors of shear zones that appear to have a spacing of approximately 100

    Contrasting Patterns of Coral Bleaching Susceptibility in 2010 Suggest an Adaptive Response to Thermal Stress

    Get PDF
    Background: \ud Coral bleaching events vary in severity, however, to date, the hierarchy of susceptibility to bleaching among coral taxa has been consistent over a broad geographic range and among bleaching episodes. Here we examine the extent of spatial and temporal variation in thermal tolerance among scleractinian coral taxa and between locations during the 2010 thermally induced, large-scale bleaching event in South East Asia.\ud \ud Methodology/Principal Findings: \ud Surveys to estimate the bleaching and mortality indices of coral genera were carried out at three locations with contrasting thermal and bleaching histories. Despite the magnitude of thermal stress being similar among locations in 2010, there was a remarkable contrast in the patterns of bleaching susceptibility. Comparisons of bleaching susceptibility within coral taxa and among locations revealed no significant differences between locations with similar thermal histories, but significant differences between locations with contrasting thermal histories (Friedman = 34.97; p,0.001). Bleaching was much less severe at locations that bleached during 1998, that had greater historical temperature variability and lower rates of warming. Remarkably, Acropora and Pocillopora, taxa that are typically highly susceptible, although among the most susceptible in Pulau Weh (Sumatra, Indonesia) where respectively, 94% and 87% of colonies died, were among the least susceptible in Singapore, where only 5% and 12% of colonies died.\ud \ud Conclusions/Significance: \ud The pattern of susceptibility among coral genera documented here is unprecedented. A parsimonious explanation for these results is that coral populations that bleached during the last major warming event in 1998 have adapted and/or acclimatised to thermal stress. These data also lend support to the hypothesis that corals in regions subject to more variable temperature regimes are more resistant to thermal stress than those in less variable environments

    Accelerated functional brain aging in pre-clinical familial Alzheimer’s disease

    Get PDF
    Resting state functional connectivity (rs-fMRI) is impaired early in persons who subsequently develop Alzheimer’s disease (AD) dementia. This impairment may be leveraged to aid investigation of the pre-clinical phase of AD. We developed a model that predicts brain age from resting state (rs)-fMRI data, and assessed whether genetic determinants of AD, as well as beta-amyloid (Aβ) pathology, can accelerate brain aging. Using data from 1340 cognitively unimpaired participants between 18–94 years of age from multiple sites, we showed that topological properties of graphs constructed from rs-fMRI can predict chronological age across the lifespan. Application of our predictive model to the context of pre-clinical AD revealed that the pre-symptomatic phase of autosomal dominant AD includes acceleration of functional brain aging. This association was stronger in individuals having significant Aβ pathology

    Multiple novel prostate cancer susceptibility signals identified by fine-mapping of known risk loci among Europeans

    Get PDF
    Genome-wide association studies (GWAS) have identified numerous common prostate cancer (PrCa) susceptibility loci. We have fine-mapped 64 GWAS regions known at the conclusion of the iCOGS study using large-scale genotyping and imputation in 25 723 PrCa cases and 26 274 controls of European ancestry. We detected evidence for multiple independent signals at 16 regions, 12 of which contained additional newly identified significant associations. A single signal comprising a spectrum of correlated variation was observed at 39 regions; 35 of which are now described by a novel more significantly associated lead SNP, while the originally reported variant remained as the lead SNP only in 4 regions. We also confirmed two association signals in Europeans that had been previously reported only in East-Asian GWAS. Based on statistical evidence and linkage disequilibrium (LD) structure, we have curated and narrowed down the list of the most likely candidate causal variants for each region. Functional annotation using data from ENCODE filtered for PrCa cell lines and eQTL analysis demonstrated significant enrichment for overlap with bio-features within this set. By incorporating the novel risk variants identified here alongside the refined data for existing association signals, we estimate that these loci now explain ∼38.9% of the familial relative risk of PrCa, an 8.9% improvement over the previously reported GWAS tag SNPs. This suggests that a significant fraction of the heritability of PrCa may have been hidden during the discovery phase of GWAS, in particular due to the presence of multiple independent signals within the same regio

    Comparability of Raman Spectroscopic Configurations: A Large Scale Cross-Laboratory Study

    Get PDF
    This is the final version. Available on open access from the American Chemical Society via the DOI in this recordThe variable configuration of Raman spectroscopic platforms is one of the major obstacles in establishing Raman spectroscopy as a valuable physicochemical method within real-world scenarios such as clinical diagnostics. For such real world applications like diagnostic classification, the models should ideally be usable to predict data from different setups. Whether it is done by training a rugged model with data from many setups or by a primary-replica strategy where models are developed on a 'primary' setup and the test data are generated on 'replicate' setups, this is only possible if the Raman spectra from different setups are consistent, reproducible, and comparable. However, Raman spectra can be highly sensitive to the measurement conditions, and they change from setup to setup even if the same samples are measured. Although increasingly recognized as an issue, the dependence of the Raman spectra on the instrumental configuration is far from being fully understood and great effort is needed to address the resulting spectral variations and to correct for them. To make the severity of the situation clear, we present a round robin experiment investigating the comparability of 35 Raman spectroscopic devices with different configurations in 15 institutes within seven European countries from the COST (European Cooperation in Science and Technology) action Raman4clinics. The experiment was developed in a fashion that allows various instrumental configurations ranging from highly confocal setups to fibre-optic based systems with different excitation wavelengths. We illustrate the spectral variations caused by the instrumental configurations from the perspectives of peak shifts, intensity variations, peak widths, and noise levels. We conclude this contribution with recommendations that may help to improve the inter-laboratory studies.COST (European Cooperation in Science and Technology)Portuguese Foundation for Science and TechnologyNational Research Fund of Luxembourg (FNR)China Scholarship Council (CSC)BOKU Core Facilities Multiscale ImagingDeutsche Forschungsgemeinschaft (DFG, German Research Foundation
    corecore