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Abstract
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1 Introduction

A fundamental result in fixed point theory is the Banach contraction principle. One
kind of a generalization of the Banach contraction principle is the notation of cyclical
maps [1]. Fixed point theory is an important tool for solving equations 7x = x for
mappings T defined on subsets of metric spaces or normed spaces. Because a non-self
mapping 7 : A — B does not necessarily have a fixed point, one often attempts to find
an element x which is in some sense closest to Tx. Best proximity point theorems are
relevant in this perspective. The notation of best proximity point is introduced in [2].
This definition is more general than the notation of cyclical maps, in sense that if the
sets intersect, then every best proximity point is a fixed point. A sufficient condition
for the uniqueness of the best proximity points in uniformly convex Banach spaces is
given in [2]. It turns out that many of the contractive-type conditions which are inves-
tigated for fixed points ensure the existence of best proximity points. Some results of
this kind are obtained in [3-6]. It is interesting that in all the investigated conditions
for the existence of best proximity the distances between sets are equal. We have
found a new type of condition which warrants the existence and the uniqueness of the
best proximity points for sets with different distances between them. This new type of
a map we have called a p-summing map. We have also shown that this new type of
map, the p-summing map, if considered not as a cyclical map, has a unique fixed
point.

2 Preliminary results

In this section, we give some basic definitions and concepts which are useful and
related to the best proximity points. Let (X, || - ||) be a Banach space. Define a dis-
tance between two subsets A, B € X by dist(4, B) = inf{||x - y|| : x € A, y € B}.
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Definition 2.1. [2,5] Let Ay, A,,.., A, be non-empty subsets of a Banach space (X, || - ||)

p p
and let T: | JA; = (JA;. The map T is called a p-cyclic contraction, if it satisfies the fol-
i=1 i=1

lowing conditions:

(1) T(A) € A;s15 1 <i < p, where A,,; = A;;

(2) For some k € (0,1) the inequality ||Tx - Ty|| < k||x - y|| + (1 - k)dist(A; A;;1)
holds for any x € A;, y € A;1, 1 <i < p. A point & € A; is said to be a best proximity
point of T in A; if ||& - T¢|| = dist(A; A;,1)-

Definition 2.1 is given for two sets A; and A, in [2], and for p-sets in [5].

It is proved in [5], that if a map is a p-cyclic contraction, then it has best proximity
points for every set A;, 1 <i < p.

We will use the following two lemmas, established in [2], to proving the uniqueness
of the best proximity points.

Lemma 2.1. [2]Let A be a non-empty, closed, convex subset, and B be a non-empty,

closed subset of a uniformly convex Banach space. Let {xn}neq and {zn}neq be sequences

in A and {yn}z1 be a sequence in B satisfying:

(1) nlgrolo ”Zn —Vn ” = dist(A, B);

(2) for every ¢ >0 there exists Ny € N, such that for all m > n > Ny, ||x,, - y,|| < dist
(A,B)+e.

Then for every ¢ > 0, there exists Ny € N, such that for all m > n > Ny, holds ||x,,-z,|| < &

Lemma 2.2. [2]Let A be a non-empty, closed, convex subset, and B be a non-empty,

closed subset of a uniformly convex Banach space. Let {xn}neq and {zn}pe, be sequences
in A and {yn}:il be a sequence in B satisfying:
(1) lim | % = yu| = dist(A, B),
2) lim |z, — yu|| = dist(A, B);
n—oo
then M [Ixn — 4] = 0
Theorem 2.1. [7]Let (X, || - ||) be a Banach space and F : X — R U {+} be a lower

semicontinuous function on X that is bounded from below and not identically equal to +oo.
Fix ¢ > 0 and a point xo € X, such that

F(xp) < ¢ +inf{F(x) : x € X}.

Then there exists a point v € X, such that ||xo - v|| < 1 and F(v) < F(x,), and for any
w = v there holds the inequality

F(v) < F(w) +ellv—w]|.

3 Main results
Let (X, || - ||) be a Banach space and A; € X. We denote P = dist(A4, A,) + dist(A,, A3) +
dist(A3,A;).

Definition 3.1. Let A, i = 1, 2, 3 be subsets of a uniformly convex Banach space (X,

3 3
[l -1])- Amap T:|JA; = [JA; will be called a 3-cyclic summing contraction if it
i=1 i=1

satisfies the following conditions:
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(1) T(A)) € Ay, for every i = 1, 2, 3 and by A, we understand Aj;
(2) Let there exists k € (0,1), such that for any x; € A, i = 1, 2, 3 there holds the
inequality
ITx1 — T2l + ITx2 — Txs || + [ Txs — T ||

(3.1)
< k(llxr = x2ll + llxo — x30l + llxs — x1[1) + (1 = k)P

Theorem 3.1. Let A;, i = 1, 2, 3 be closed, convex subsets of a uniformly convex

3 3
Banach space X and T : |JA; — [JA; is a 3-cyclic summing contraction. Then for any
i=1 i=1

i =1, 2, 3 there exist unique best proximity points z; € A; such that for any x € A;
the sequence {T3”x}f;1 converges to z;,. Moreover, Tz = z;,j is a best proximity point
in A;,j, j =1, 2 and z; is a fixed point of the map T°.

Definition 3.2. Let (X, || - ||) be a Banach space. A map T : X — X will be called a
3-summing contraction if there exists k € (0,1), such that for any x = y # z there
holds the inequality

||Tx — Ty|| + ||Ty— Tz|| +||Tz — Tx|| < k(||x— y|| + ||y—z|| + llz —x|l). (3.2)

Let us mention that any contraction map 7': X — X is a 3-summing map, but obviously
there are 3-summing maps that are not contractions. The requirement x # y = z in Defini-
tion 3.2 is necessary because if we do not impose it, then if we take y = z in (3.2) we will
get the classical Banach contraction condition.

Theorem 3.2. Let X be a Banach space and 7": X — X be a 3-summing contraction.
Then 7 has a unique fixed point.

It is easy to define a p-summing contraction. Let us mention that all the results in
Theorems 3.1 and 3.2 are true for a p-summing contraction. Just for the sake of sim-
plicity we decide to state them and to prove them for a 3-summing contraction.

4 Auxiliary results
Lemma 4.1. Let A;, i = 1, 2, 3 be closed, convex subsets of a uniformly convex Banach

3 3
space X and T : | JA; — |JA; be a 3-cyclic summing contraction, then for any x € A,
i1 i-1

i =1, 2, 3 the iterative sequence {T"x},-, satisfies

lim (||Tn+3x _ Tn+2x|| + ||Tn+2x _ Tn+1x|| + ||Tn+1x _ Tn+3X||) =P (43)

n—>00
Proof. Let x € A;. By the chain of inequalities:
||Tn+3x _ Tn+2x|| + ||Tn+2x _ Tn+1x|| + ||Tn+1x _ Tn+3x||
< R(||T™2x — T x|| + || T™'x — T"x]| + || T"x — T"x]|)
+(1 —k)P
< RK(|IT" % — T"x|| + ||T"x — T" x| + ||T"'x — T™x||)
+(1+k)(1 = k)P
<IP(IT" = T x| + [T e — T2 | + || T2 — T"x] )
+(1+k+E*)(1—-k)P
< K| T — Tx|| + || Tx — x|| + ||x — T?x]|)
+(1+k+---+K")(1—-Fk)P
= K™ (|| T — Tx|| + || Tx — x| + |Jx — T2x]|) + (1 = K*1)P
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and the fact that 7""'x, T"*%*x and T"**x belong to different sets A; i = 1, 2, 3, we
get the inequality

P = diSt(Al,Az) + diSt(A2,A3) + diSt(A3,A1)
< ||T‘ﬂ+3x _ Tn+2x|| + ||T‘ﬂ+2x _ T‘rl+1x|| + ||Tn+1x _ T‘rl+3x||

< K™ T2 — Tx|| + || Tx — x|| + [|x — Tx]|) + (1 — K*1)P

and the proof follows because nlggo k" =

Lemma 4.2. Let A;, i = 1, 2, 3 be closed, convex subsets of a uniformly convex

Banach space X and T : in — QA,' be a 3-cyclic summing contraction, then for any
i= i=
x € A; the inequality
[T3*'x — T"x| < 12" (a(x) — P) + dist(A;, A1)
holds, where

a(x) = |T%x — Tx| + |Tx — x| + ||x — T2

Proof. If x € A;, then T?"x € A; and T>"*'x € A;,;. By the proof of Lemma 4.1 we

have
[| T3 — T3"x|| + P — dist(A;, A1)
< ||T3"+1x _ T3n.x|| + ||T3‘rlx _ T3‘rl—lx|| + ||T3n—1x _ T3‘rl+1x||
<"N(||T?x — Tx|| + ||Tx — x|| + |]x — T%x||) + (1 = "~ 1)P
thus

||T3"+1x — T3”x|| < diSt(Ai, Ai+1) +1"! (O‘(x) - P)'

Corollary 4.1. Let A;, i = 1, 2, 3 be closed, convex subsets of a uniformly convex

3 3
Banach space X and T : | JA; = |JA; be a 3-cyclic summing contraction, then for any
i=1 i=1

x € A, there holds
lim HT3”+1x - T3"x|| = dist(A;, Air1).-

n—o0

Lemma 4.3. Let A;, i = 1, 2, 3 be closed, convex subsets of a uniformly convex

3 3
Banach space X and T : |JA; — |JA; be a 3-cyclic summing contraction, then for any
i=1 i=1

%, y € A, the inequality
[T % = T2y || < 12" (a(x,y) — P) + dist(Ay, Air1)
holds, where
a(0y) =[x =Ty + [T = Ty| + [Ty -«
Proof. If x, y € A, then Ty e A;and T*"*'x € A;,;. By the proof of Lemma 4.1 we have

[ T3 x — T3"3y|| + P — dist(A;, Ai1)
< ||T3n+lx _ T3n+3y|| + ||T3n+3y _ T3n+2y|| + ||T3n+2y _ T3n+lx||

<" (|lx = Tl + 1Ty = Tl + +||Ty — xl]) + (1 — &>"™1)P

Page 4 of 12
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thus
T3 x — T>"3y| < dist(A, Ai1) + ™ (a(x,y) — P).
Corollary 4.2. Let A;, i = 1, 2, 3 be closed, convex subsets of a uniformly convex

3 3
Banach pace X and T: |JA; - |JA; be a 3-cyclic summing contraction, then for any
i=1 i=1

x, y € A; there holds
lim ||T3"*1x - T3"*3y|| = dist(Aj, Aiz1)-

n—o00

The following lemma can be proved in a similar fashion.

Lemma 4.4. Let A;, i = 1, 2, 3 be closed, convex subsets of a uniformly convex

3 3
Banach space X and T : | JA; — |JA; be a 3-cyclic summing contraction, then for any
i=1 i=1

x € A; and for any k € N there hold:

lim [ 751y — T2 = dist(Aj, Ain), (4.4)
lim [T — T = 0, (4.5)
Tim (T3"+k+1x - T3"+ki3xH = dist(Ai Air1ak), (4.6)
,}L’Eo “ 3y _ T3n+ki3xn -0, 4.7)

Lemma 4.5. Let A;, i = 1, 2, 3 be closed, convex subsets of a uniformly convex

3 3
Banach space X and T : [ JA; — |JA; be a 3-cyclic summing contraction. If for some
i=1 i=1

x € A, i=1,2, 3, the iterative sequence {T3"x}:<il has a cluster point z, then z is a

best proximity point of 7 in A;.

Proof. Let ]l_lglo T*ix =2 Then by the continuity of the function flu) = ||u - v||, for

fixed v e X it it follows that llz — Tzl = ]1_1510 ||T3nj X = TZ” . We will prove first that

lim |77 'x —z| = lim |T%"%'x — T%"x| . (4.8)
j—>o00 j—o00

By the triangle inequality:
0<||T?" 'x—z| — |T°% 'x — T%"x||| < |T*"x — 2| (4.9)
it follows that
lim ([T 2] — 15— Py =0 10)
If we take k = 2 in (4.6) we get

lim H T3m+3x — T3”f’1xH = dist(A;, Air2). (4.11)

j—o0o
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For any x € A, the inclusions T3%x € A;, T3 1x € A;,, hold. Then by the inequality
dist(Ai Awa) < | T 'x — T < [ T%%'x — T3] + | T%%x — T2,

and the equalities (4.5) and (4.11) we get

im ||T3"1"1x - T3""x|| = dist(A;, Air2). (4.12)
j—o00

Now by (4.10) and (4.12) we found that (4.8) holds true.
We apply consecutively (4.8) to obtain the next chain of inequalities:

|z — Tz|| + ||Tz — Tzz|| + ||T2z — z||

= lim (|| T?"x — Te|| + || Tz — T%|| + | T%z — T*"x||)
j—o0
<klim(|T*" 'x —z| + lz — Tzl + | Tz — T*"'x||) + (1 — k)P
j—o0
=k lim (| T x — T>x| + | T>x — Tz| + | Tz — T 'x|)
j—>o00

+(1—k)P

< k? 1im(||T3”i’2x — T3”f’1x|| + ||T3"1"1x — z|| + ||z — T3”"’2x||)
j—>o0 (4.13)

+(1+k)(1 = k)P

= I lim (| 22 — 799 | + | 191 — T3
j—00

+ || T%x — T 2x||) + (1 + k) (1 — k)P

< k3 1im(||T3nj—3x _ T3nj—2x|| + ||T3Ylj—2x _ T3n,'—1x||
j—>o0

+ |73 = T %) + (1 + R+ E2)(1 — k)P
=k*P+(1 -k)P=P.

Since z € A, it follows that Tz € A;,;, T’z € A,,, and hence

P — dist(Aj, Ais1) = dist(Air1, Airz) + dist(Aig, Ai) < ||Tz - TzzH + H T?z — z” .
Consequently by (4.13) we obtain

lz — Tz|| + P — dist(Ai, Ais1) < llz — Tz|| + ||Tz — T2z|| + ||T2z — z|| <P

and therefore we get ||z - Tz|| < dist(4;, A;;1). The opposite inequality ||z - Tz|| =
dist(A; A;,1) is obvious and hence we conclude that ||z - TZz|| = dist(A4;, A;;1). Thus z
is a best proximity point of T in A;.

Lemma 4.6. Let A;, i = 1, 2, 3 be closed, convex subsets of a uniformly convex

3 3
Banach space X and T : | JA; = |JA; be a 3-cyclic summing contraction. If for some
i=1 i=1

xe A, i=1,2,3, the iterative sequence {T3"x}°°, has a cluster point z, then z is a

fixed point for T°.

Proof. Let lim T°%x = 2 Then from the continuity of the function flu) = ||u-v||, for
j—o0
fixed v e X it follows that |¢—T%]= ]l_lfg) |T°%x = T%|  and

|z — T°|| = lim ||T3"x — T,
j—o00

Page 6 of 12
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We will prove first that

im |T%%*x —z|| = lim |T°"%*x — T%"x| . (4.14)
j—>o00 j—>o00
By the triangle inequality:
0 <||T?*x—z| — | T°"*x — T*"x||| < |T*"x — 2| (4.15)
it follows that
lim (| T°%*x — 2| — | T°"*x — T*"x|) = 0. (4.16)
j—>oo
For any x € A; the inclusions T3%x € A;, T3"*x € A;,, hold and we can write the
inequalities

dist(A;, Aip) < [T %% — T7"x]|

(4.17)
< ||T3n,74x _ TSn,vflx“ + ||T3n]71x _ T3n1+3x|| + ||T3n,+3x _ T3n,x||.
From (4.7), (4.5), and (4.11) it follows that
lim ||7%"%x — T?"x| = dist(A;, Ai2). (4.18)

j—oo

Now by (4.16) and (4.18) we found that (4.14) holds true. We will omit the proof
that

lim ||T3"1’5x—z|| = lim ||T3"1’5x— T3"ix|, (4.19)
j—>o00

j—o00
because it is similar to the above one.
We apply consecutively (4.14), (4.8), and (4.19) to obtain the next chain of inequalities:
llz — Tz|| + || T — T°z|| + ||T°z — z||
= lim (||T3"x — T*2|| + || T*z — T°z|| + ||T°z — T*"ix||)
j—>o0
< kIim (||T>" 'x — T32|| + ||T?z — T*z|| + ||T*z — T°"'x]|)
j—>o0
+(1 —k)P
< kK* lim (|| 73" *x — z|| + ||z — Tz|| + || Tz — T>"*x||)
Jj—> oo
+(1 —kHP
= k* lim (|| 73" %% — T3"ix|| + || T3 x — Tz|| + || Tz — T>"*x||)
j—o0
+(1 —kYHP (4.20)
< I lim (||T3"% 2% — T3 x| + | T3 'x — 2|| + ||z — T>"x]|)
Jj—oo
+(1 =k)P
— kS lim(||T3nj75x _ T3n,-71x|| + ||T3n]»71x _ T3n]’x||
Jj—>oo
+|T3%x — T3 x| |) + (1 — k*)P
S kG _lim(||T3"j_6x _ T31’l,'—2x|| + ||T3‘rlj—2x _ T3‘rl}'—1x||
]—)DO

+| T3 — T3 Cx]) + (1 — k)P
=kP+ (1 —Ek°)P=P.

Page 7 of 12
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By z € A, it follows that T*z € A,,;, T°z € A,,, and hence

P — dist(Aj, Aiv1) = dist(Ai1, Aira) + dist(Ain, A) < || Tz — Tz + | T2 — 2| .
Consequently by (4.20) we obtain

|z — T*z| + P — dist(A;, A1) < |z — T'2|| + |T*2 — T%2| + | T°z — 2| < P.

and therefore we get ||z - T%2|| < dist(A4; A;,1). The opposite inequality ||z - T%z|| =
dist(A;A;,1) is obvious and therefore it follows that ||z - T%|| = dist(A;, A;,1). Now by
Lemma 4.5 we get that

||z - T4z|| = ||z — Tz|| = dist(Ai, Ais1)

and from the uniform convexity of X it follows that T%x = Tx.
By the inequality
|4 — T + | T2 — T%| + |T% - Tz
= | T2 — T2 + | T2 — T2 + | T2 — T%|
< k(| T’z — T?z|| + | Tz — Tz| + | Tz — T?z|)) + (1 — k)P
=k(|T°z — T%2| + |T°2 — Tz| + |T*z — T°2|) + (1 — k)P

we get
(1= k)| T*%2 — Tz + (1 — k) (P — dist(A;, Ais1)) < (1 — k)P,

ie. || Tz - T%2|| < dist(A; A;,1). By the obvious inequality || T*z - T%Z|| > dist(A4;, A;,1)
it follows that ||T%z - T°|| = dist(A; A;,,). Now from

|z — T%z| = [Tz — T*2| = dist(Ai, Ais1)

and the uniform convexity of X it follows that 7°z = z

Lemma 4.7. If T is a 3-summing contraction then 7 is continuous.

Proof. Let fix xy € X and let {yn}zi1 and {zn}oo; be two sequences, that are conver-
gent to xo. Then for any ¢ >0 there is 1y € N, such that for every n > ng there holds ||
X% = Yull + |1y - zul| + |20 - ¥ull < & By the inequalities

1T — Tyall < I1T%0 = Tyall + 1Ty = Tanll + [IT2n — Tol

< k(llxo = yall + [lyn — zall + llzn — Xoll) < &

it follows that T is continuous at x.

5 Proof of main results

o]

Proof of Theorem 3.1. First we will show that for any x € A; the sequence {T3"x} is

n=1
convergent, i.e., it is enough to prove that the sequence {Tg”‘x}zi1 is a Cauchy

sequence.
Claim 5.1. For any ¢ >0 there exists ng, such that for any m > n > ng there holds the

inequality

T3 — T2 x| + | T2 % — T3 2% + | TP — T>"x| < P+ e (5.21)
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Proof of Claim 5.1. Suppose the contrary, i.e., there is ¢ >0 such that for every k€ N
there are my > n; > k so that

[ T3 — T3 | 4 | T3+ — T2 || + || T 2x — T?™ x| > P + . (5.22)

Choose m; to be the smallest integer satisfying (5.22). Now from Lemma 4.5 we have

that
lim ||T3m"x - T3m"’3x|| =0
k—o00
and by
P+e < ||T3mkx _ T3nk+1x|| + ||T3nk+1x _ T3nk+2x” + ||T3nk+2x _ T3mkx |
< || Tsmkx _ T3mk—3x” + ||T3mk—3x _ T3nk+1x||
+ ” TSnk+1x _ TSnk+2x|| + ||T3nk+2x _ TSmkx |
we get
P+e < lim (| T%"x — T+ x| + || T — T2x|| + | T2 — T™x|) < P +e.
ke— o0
Thus

lim (||T3'”"x — T3""*1xu + ||T3""*1x — T3""*2x|| + ||T3""*2x — T3m"x||) =P+¢
k—o0

Now from the triangular inequality we have

||T3mkx _ T3nk+1x|| + ||T3nk+1x _ T3nk+2x|| + ||T3nk+2x _ T3mkx||
< ||T3mkx _ T3mk+3x|| + ||T3mk+3x _ T3nk+4x||
+| |T3nk+4x _ T3nk+1x| |
+| |T3nk+1x _ T3nk+4x|| + ||T3nk+4x _ T3nk+5x|| (523)
+| |T3nk+5x _ T3nk+2x||
+| |T3nk+2x _ T3nk+5x|| + ||T3nk+5x _ T3mk+3x||

+| |T3H’lk+3x _ T3ka||

and by Lemma 4.4, taking a limit in (5.23) and applying condition (3.1) three times
we get we get

lim (| |T3mkx _ T3nk+1x|| + ||T3nk+1x _ T3nk+2x|| + ||T3nk+2x _ T3mkx| |)
k— o0
< llm (l |T3mk+3x _ T3nk+4x|| + ||T3nk+4x _ T3nk+5x||
k— o0

+| |T3nk+5x _ T3mk+3x| |)

< ka,}LTO(HTSWx B T3""+1x|| + ||T3"k+1x N T3nk+2x|l
+]| T3+ 2 — T3Mex||) + (1 — k)P
ie.
P+e<k@P+e)+(1—-EK)P,

which is a contradiction and Claim 5.1 is proved.
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Now by Claim 5.1 we have that for any ¢ >0 there is 7o, such that
||T3mx — T3”+1x|| < dist(A;, Aiy1) + €

for every m > n = ny and by Corollary 4.1 and Lemma 2.1 we have that the sequence
{T3"x}zzl is a Cauchy sequence. Thus lim,,_,.. 7%"x = z and z is a best proximity point
of Tin A,

For the next proof we will follow the idea in [8], how to use a variational principle to
prove a fixed point theorem.

Proof of Theorem 3.2. Let us define the function F : X — R by

F(x) = | Tx — x|l + || T?x — Tx|| + | T°x — x| .

Since by Lemma 4.7 the function 7' is continuous and so is F. It is easy to see that F
is bounded form below and not identically +e. Choose ¢, > 0, such that k + ¢ < 1.
There exists xo € X, such that F(xg) < g + inf{F(x) : x € X}, because F is continuous
and bounded from below. Therefore, we can apply Theorem 2.1. By Theorem 2.1 there
is ve X, such that ||xo - v|| < 1 and for every w € X there holds the inequality

F(v) <F(w) +ellv—w]|.

Suppose that T does not have a fixed point then F(v) > 0 for every v e X. Put w =
Tv. Then we get the inequality F(v) < F(Tv) + ¢||v - Tv||, i.e.,

F(v) = ||Tv = v|| + [|T*v — Tv|| + [|T?v — v]|
1Ty — Tv|| + [|T> — T3v]| + | T3 — To|| + &|jv — Tv|
< k([ITv — || + [|T*v = Tv|| + [|T*v — v]|) + &||v — Tv||

= (k+&)||Tv —v|| + k(|| T?v — Tv|| + || T?v — v||).

IA

By the last chain of inequalities we get
(1—k—e)lITv—vl + (1 —k)(|T>v — Tv| + |[T*v—v|)) <0,

which is a contradiction and therefore Tv = v.
Let us suppose that 7 has two fixed points x = y. Let z € X, be fixed and different

[« =]

from x, y. There is sq € N, such that k* <
lx—7] + [y — 2] + Iz —xi

. Then for any s
> sy by 3.2 we get
[lx =yl = [T — Ty|| < [IT°x — T%|| + [|T°y — T%%|| + || T’z — T’x]|
< k(T ' =Ty + ITy = T 2] | + 1T 2 — T 1] ])
<K (llx =yl + Iy — 2l + llz — x]),

which is a contradiction and thus 7" has a unique fixed point.
We would like to illustrate Theorem 3.1 with two example:

Example 5.1. Consider the Euclidian space (]R3 I-ll,), endowed with the Euclidian
norm || (x,y,2) H2 = \/xz +y2 +22. Let XC R?z’ be

X={(xy,2) :x€[4,5],y,2=0}, YCR3 be Y={(xy,2):ye[1,2],x2=0}, ZCR]
be Z = {(x, ¥, 2): z € [1,2], x, y = 0}. Define the 3-cyclicmap I: X > ¥V, T:Y - Z, T:
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o 18 2, ! [, ]

y 7
T(0,y,0)=10,0, ' 1,2
©r0-(00]+7) rema

31

,0,0), ze1,2].
8

7(0,0,2) = <; .

It is easy to check that

maxi\/<z + ;>2+<g + ;)2— ;\/(x2+y2) :x€[4,5],y€ [1,2]} =v2- J217,
max{\/<: +;>2+<; + 381>2_ ;\/(x)2+z2 :x€[4,5],z¢€ [1,2]} = 217,

maxi\/<£ + ;>2+ (Z + 381)2_ ;\/(y2 +22):xe(L,2],z€ [1,2]] - V17— \22.

Thus we get that for every x € X, y € Y, z <€ Z there holds the inequality:

1 1
||Tx— TyH2 + ||Ty—Tz||2 + | Tz — Tx||, < 2(||x—y||2 + ||y—z||2 + llz —xll,) + 2P,

because P = dist(X, Y) + dist(Y, Z) + dist(Z, X) = 24/17 + +/2. The distances between
the three sets are different. The map T is not a cyclical contraction. Indeed, there

exists &g, dp > 0, such that for any z, y € [1,1 + dp] we have
||Tz— Ty||2 >V17 —g9> 2480 > k||z— y||2 + (1 — k)dist(Z, X).
Example 5.2. Consider the Banach space (R3, |[|-]I), where ||| - ||| = || - |l2 + || - |1
and ||(x 5 2)|]1 = |*| + |y| + |z]. Let XC R3 be X = {(x, y, 2): x € [4,5], % z =0},

YCRIbeY={xy2:ye(12,x2z=0,ZCRbeZ={xy2:z¢c [12],xy=
0j. Define the 3-cyclicmap I: X > Y, I: Y > Z, T : Z — X by

x 1
T(x,0,0) = (O, + ,O), x € [4,5]
8 2

7
7(0,7,0) = <0,0, g N 8), yell 2]

31
7(0,0,2) = (Z £ ,0,0), ze[1,2].

It is easy to check for every x € X,y € Y, z€ Z that

ma 7= 1] = ) lle—rll x e slyenail == e va= V7,
max{|||Tx—Tz||| — ; llx—zl||| :x €[4,5],z € [1,2]} = i + \/217,
max{n;Ty_Tz;” -zl venaee [1,2]} 417 f
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and P = 2./17 + +/2 + 12. Therefore, there holds the inequality

1 1
[T =T + |7 = T2l |+ 11Tz = Tl < (e = vl + [y = 2l + 1z = x11) + P

It remains to show that the space (R ||| - |||) is uniformly convex. Let us consider its
dual space (R>)||| - |[|*). The norm [|| - ||| is strictly convex, then ||| - |||* is Geteaux dif-
ferentiable [9,10]. The space (R%||| - |||*) is finite dimensional and therefore ||| - |||* is

uniformly Frechet differentiable and consequently ||| - ||| is uniformly convex [9,10].
The distances between the three sets are different. The map T is not a cyclical con-
traction. Indeed, there exist ¢y, dp > 0, such that for any z, y € [1,1 + Jp] we have

”‘Tz—Ty‘” > V1745 —g0 > /242480 > kHz—yH + (1 — k)dist(Z, X).
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