305 research outputs found

    Proposed system safety design and test requirements for the microlaser ordnance system

    Get PDF
    Safety for pyrotechnic ignition systems is becoming a major concern for the military. In the past twenty years, stray electromagnetic fields have steadily increased during peacetime training missions and have dramatically increased during battlefield missions. Almost all of the ordnance systems in use today depend on an electrical bridgewire for ignition. Unfortunately, the bridgewire is the cause of the majority of failure modes. The common failure modes include the following: broken bridgewires; transient RF power, which induces bridgewire heating; and cold temperatures, which contracts the explosive mix away from the bridgewire. Finding solutions for these failure modes is driving the costs of pyrotechnic systems up. For example, analyses are performed to verify that the system in the environment will not see more energy than 20 dB below the 'No-fire' level. Range surveys are performed to determine the operational, storage, and transportation RF environments. Cryogenic tests are performed to verify the bridgewire to mix interface. System requirements call for 'last minute installation,' 'continuity checks after installation,' and rotating safety devices to 'interrupt the explosive train.' As an alternative, MDESC has developed a new approach based upon our enabling laser diode technology. We believe that Microlaser initiated ordnance offers a unique solution to the bridgewire safety concerns. For this presentation, we will address, from a system safety viewpoint, the safety design and the test requirements for a Microlaser ordnance system. We will also review how this system could be compliant to MIL-STD-1576 and DOD-83578A and the additional necessary requirements

    Fabrication of magnetic atom chips based on FePt

    Full text link
    We describe the design and fabrication of novel all-magnetic atom chips for use in ultracold atom trapping. The considerations leading to the choice of nanocrystalline exchange coupled FePt as best material are discussed. Using stray field calculations, we designed patterns that function as magnetic atom traps. These patterns were realized by spark erosion of FePt foil and e-beam lithography of FePt film. A mirror magneto-optical trap (MMOT) was obtained using the stray field of the foil chip.Comment: 5 pages, 5 figure

    Phase II study of neoadjuvant 5-FU + leucovorin + CPT-11 in patients with resectable liver metastases from colorectal adenocarcinoma

    Get PDF
    BACKGROUND: Following resection of liver metastases from colorectal cancer, 5-year survivals are reportedly 30 – 39%. It can be assumed that this clinical situation represents systemic disease. Therefore, it is postulated that systemic chemotherapy would improve outcomes, particularly in those whose disease is sensitive to the agents administered. One potential advantage of neoadjuvant chemotherapy is that it provides in vivo chemosensitivity data. Response to neoadjuvant chemotherapy could therefore guide adjuvant chemotherapy following resection of liver metastases from colorectal cancer. METHODS AND DESIGN: This is a prospective Phase II evaluation of outcomes in patients with potentially resectable liver metastases. Patients will receive neoadjuvant chemotherapy and will undergo resection. Postoperative chemotherapy will be directed by the degree of response to preoperative chemotherapy. All patients with Stage IV colorectal adenocarcinoma isolated to the liver that have disease that is amenable to complete ablation by resection, radiofrequency ablation, and/or cryoablation will be candidates for the trial. Patients will receive CPT-11 180 mg/m(2 )IV (over 90 minutes) on day 1 with 5-FU 400 mg/m(2 )bolus and 600 mg/m(2 )by 22 hour infusion and calcium folinate 200 mg/m(2 )on days 1 and 2, every 2 weeks. Altogether, six cycles of chemotherapy will be administered. Patients will then undergo resection and/or radiofrequency ablation. Patients who had stable disease or a clinical response with preoperative chemotherapy will receive an additional 12 cycles of CPT-11 180 mg/m(2 )IV (over 90 minutes) on day 1 with 5-FU 400 mg/m(2 )bolus and 600 mg/m(2 )by 22 hour infusion and calcium folinate 200 mg/m(2 )on days 1 and 2 (given every 2 weeks). Patients with resectable disease who had progressive disease during neoadjuvant chemotherapy will receive best supportive care or an alternative agent, at the discretion of the treating physician. Those patients who are not rendered free of disease following the neoadjuvant chemotherapy and surgery will receive best supportive care or an alternative agent, at the discretion of the treating physician. The primary endpoint of the study is disease-free survival. Secondary endpoints include overall survival, safety and feasibility, response to chemotherapy, and quality of life

    The effects of superoxide dismutase-rich melon pulp concentrate on inflammation, antioxidant status and growth performance of challenged post-weaning piglets

    Get PDF
    Piglets can often suffer impaired antioxidant status and poor immune response during post-weaning, especially when chronic inflammation takes place, leading to lower growth rates than expected. Oral administration of dietary antioxidant compounds during this period could be a feasible way to balance oxidation processes and increase health and growth performance. The aim of the trial was to study the effects of an antioxidant feed supplement (melon pulp concentrate) that contains high concentration of the antioxidant superoxide dismutase (SOD) on inflammation, antioxidant status and growth performance of lipopolysaccharide (LPS) challenged weaned piglets. In total, 48 weaned piglets were individually allocated to four experimental groups in a 2 72 factorial design for 29 days. Two different dietary treatments were adopted: (a) control (CTR), fed a basal diet, (b) treatment (MPC), fed the basal diet plus 30 g/ton of melon pulp concentrate. On days 19, 21, 23 and 25 half of the animals within CTR and MPC groups were subjected to a challenge with intramuscular injections of an increasing dosage of LPS from Escherichia coli (serotype 0.55:B5) (+) or were injected with an equal amount of PBS solution ( 12). Blood samples were collected at the beginning of the trial and under the challenge period for interleukin 1\u3b2, interleukin 6, tumour necrosis factor \u3b1, haptoglobin, plasma SOD activity, total antioxidant capacity, reactive oxygen species, red blood cells and plasma resistance to haemolysis, and 8-oxo-7, 8-dihydro-2\u2019-deoxyguanosine. Growth performance was evaluated weekly. A positive effect of melon pulp concentrate was evidenced on total antioxidant capacity, half-haemolysis time of red blood cells, average daily gain (ADG) and feed intake, while LPS challenge increased pro-inflammatory cytokines and haptoglobin serum concentrations, with a reduced feed intake and gain : feed (G : F). The obtained results show that oral SOD supplementation with melon pulp concentrate ameliorates the total antioxidant capacity and the half-haemolysis time in red blood cell of post-weaning piglets, with positive results on growing performance

    Non drowsy obstructive sleep apnea as a potential cause of resistant hypertension: a case report

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Obstructive sleep apnea (OSA) and arterial hypertension (AH) are common and underrecognized medical disorders. OSA is a potential risk factor for the development of AH and/or may act as a factor complicating AH management. The symptoms of excessive daytime sleepiness (EDS) are considered essential for the initiation of continuous positive airway pressure (CPAP) therapy, which is a first line treatment of OSA. The medical literature and practice is controversial about the treatment of people with asymptomatic OSA. Thus, OSA patients without EDS may be left at increased cardiovascular risk.</p> <p>Case presentation</p> <p>The report presents a case of 42year old Asian woman with symptoms of heart failure and angina like chest pain upon admission. She didnt experience symptoms of EDS, and the Epworth Sleepiness Scale was seven points. Snoring was reported on direct questioning. The patient had prior medical history of three unsuccessful pregnancies complicated by gestational AH and preeclampsia with C-section during the last pregnancy. The admission blood pressure (BP) was 200/120mm Hg. The patients treatment regimen consisted of five hypotensive medications including diuretic. However, a target BP wasnt achieved in about one and half month. The patient was offered to undergo a polysomnography (PSG) study, which she rejected. One month after discharge the PSG study was done, and this showed an apnea-hypopnea index (AHI) of 46 events per hour. CPAP therapy was initiated with a pressure of 11H<sub>2</sub>0cm. After 2months of compliant CPAP use, adherence to pharmacologic regimen and lifestyle modifications the patients BP decreased to 134/82mm Hg.</p> <p>Conclusions</p> <p>OSA and AH are common and often underdiagnosed medical disorders independently imposing excessive cardiovascular risk on a diseased subject. When two conditions coexist the cardiovascular risk is likely much greater. This case highlights a possible clinical phenotype of OSA without EDS and its association with resistant AH. Most importantly a good hypotensive response to medical treatment in tandem with CPAP therapy was achieved in this patient. Thus, it is reasonable to include OSA in the differential list of resistant AH, even if EDS is not clinically obvious.</p

    A unique population of effector memory lymphocytes identified by CD146 having a distinct immunophenotypic and genomic profile

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>CD146 is a well described homotypic adhesion molecule found on endothelial cells and a limited number of other cell types. In cells from the peripheral circulation, CD146 has also been reported to be on activated lymphocytes <it>in vitro </it>and <it>in vivo</it>. The function associated with CD146 expression on lymphoid cells is unknown and very little information is available concerning the nature of CD146+ lymphocytes. In the current study, lymphocytes from healthy donors were characterized based upon the presence or absence of CD146 expression.</p> <p>Results</p> <p>CD146 was expressed on a low percentage of circulating T lymphocytes, B lymphocytes, and NK cells in healthy individuals. CD146 expression can be induced and upregulated <it>in vitro </it>on both B cells and T cells, but does not correlate with the expression of other markers of T cell activation. CD146 positive T cells do not represent clonal expansions as determined with the use of anti Vβ reagents. Data suggest that CD146 positive cells have enhanced adherence to endothelial monolayers in vitro. Gene profiling and immunophenotyping studies between CD146+ and CD146- T cells revealed several striking genotypic distinctions such as the upregulation of IL-8 and phenotypic differences including the paucity of CCR7 and CD45RA among CD146 positive T cells, consistent with effector memory function. A number of genes involved in cell adhesion, signal transduction, and cell communication are dramatically upregulated in CD146+ T cells compared to CD146- T cells.</p> <p>Conclusion</p> <p>CD146 appears to identify small, unique populations of T as well as B lymphocytes in the circulation. The T cells have immunophenotypic characteristics of effector memory lymphocytes. The characteristics of these CD146+ lymphocytes in the circulation, together with the known functions in cell adhesion of CD146 on endothelial cells, suggests that these lymphocytes may represent a small subpopulation of cells primed to adhere to the endothelium and possibly extravasate to sites of inflammation.</p

    A Complete Pathway Model for Lipid A Biosynthesis in Escherichia coli.

    Get PDF
    Lipid A is a highly conserved component of lipopolysaccharide (LPS), itself a major component of the outer membrane of Gram-negative bacteria. Lipid A is essential to cells and elicits a strong immune response from humans and other animals. We developed a quantitative model of the nine enzyme-catalyzed steps of Escherichia coli lipid A biosynthesis, drawing parameters from the experimental literature. This model accounts for biosynthesis regulation, which occurs through regulated degradation of the LpxC and WaaA (also called KdtA) enzymes. The LpxC degradation signal appears to arise from the lipid A disaccharide concentration, which we deduced from prior results, model results, and new LpxK overexpression results. The model agrees reasonably well with many experimental findings, including the lipid A production rate, the behaviors of mutants with defective LpxA enzymes, correlations between LpxC half-lives and cell generation times, and the effects of LpxK overexpression on LpxC concentrations. Its predictions also differ from some experimental results, which suggest modifications to the current understanding of the lipid A pathway, such as the possibility that LpxD can replace LpxA and that there may be metabolic channeling between LpxH and LpxB. The model shows that WaaA regulation may serve to regulate the lipid A production rate when the 3-deoxy-D-manno-oct-2-ulosonic acid (KDO) concentration is low and/or to control the number of KDO residues that get attached to lipid A. Computation of flux control coefficients showed that LpxC is the rate-limiting enzyme if pathway regulation is ignored, but that LpxK is the rate-limiting enzyme if pathway regulation is present, as it is in real cells. Control also shifts to other enzymes if the pathway substrate concentrations are not in excess. Based on these results, we suggest that LpxK may be a much better drug target than LpxC, which has been pursued most often

    Leptin and Adiponectin: new players in the field of tumor cell and leukocyte migration

    Get PDF
    Adipose tissue is no longer considered to be solely an energy storage, but exerts important endocrine functions, which are primarily mediated by a network of various soluble factors derived from fat cells, called adipocytokines. In addition to their responsibility to influence energy homeostasis, new studies have identified important pathways linking metabolism with the immune system, and demonstrating a modulatory role of adipocytokines in immune function. Additionally, epidemiological studies underline that obesity represents a significant risk factor for the development of cancer, although the exact mechanism of this relationship remains to be determined. Whereas a possible influence of adipocytokines on the proliferation of tumor cells is already known, new evidence has come to light elucidating a modulatory role of this signaling substances in the regulation of migration of leukocytes and tumor cells. The migration of leukocytes is a key feature to fight cancer cells, whereas the locomotion of tumor cells is a prerequisite for tumor formation and metastasis. We herein review the latest tumor biological findings on the role of the most prominent adipocytokines leptin and adiponectin, which are secreted by fat cells, and which are involved in leukocyte migration, tumor growth, invasion and metastasis. This review thus accentuates the complex, interactive involvement of adipocytokines in the regulation of migration of both leukocytes and tumor cells, and gives an insight in the underlying molecular mechanisms

    Design and development of a peptide-based adiponectin receptor agonist for cancer treatment

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Adiponectin, a fat tissue-derived adipokine, exhibits beneficial effects against insulin resistance, cardiovascular disease, inflammatory conditions, and cancer. Circulating adiponectin levels are decreased in obese individuals, and this feature correlates with increased risk of developing several metabolic, immunological and neoplastic diseases. Thus, pharmacological replacement of adiponectin might prove clinically beneficial, especially for the obese patient population. At present, adiponectin-based therapeutics are not available, partly due to yet unclear structure/function relationships of the cytokine and difficulties in converting the full size adiponectin protein into a viable drug.</p> <p>Results</p> <p>We aimed to generate adiponectin-based short peptide that can mimic adiponectin action and be suitable for preclinical and clinical development as a cancer therapeutic. Using a panel of 66 overlapping 10 amino acid-long peptides covering the entire adiponectin globular domain (residues 105-254), we identified the 149-166 region as the adiponectin active site. Three-dimensional modeling of the active site and functional screening of additional 330 peptide analogs covering this region resulted in the development of a lead peptidomimetic, ADP 355 (H-DAsn-Ile-Pro-Nva-Leu-Tyr-DSer-Phe-Ala-DSer-NH<sub>2</sub>). In several adiponectin receptor-positive cancer cell lines, ADP 355 restricted proliferation in a dose-dependent manner at 100 nM-10 μM concentrations (exceeding the effects of 50 ng/mL globular adiponectin). Furthermore, ADP 355 modulated several key signaling pathways (AMPK, Akt, STAT3, ERK1/2) in an adiponectin-like manner. siRNA knockdown experiments suggested that ADP 355 effects can be transmitted through both adiponectin receptors, with a greater contribution of AdipoR1. <it>In vivo</it>, intraperitoneal administration of 1 mg/kg/day ADP 355 for 28 days suppressed the growth of orthotopic human breast cancer xenografts by ~31%. The peptide displayed excellent stability (at least 30 min) in mouse blood or serum and did not induce gross toxic effects at 5-50 mg/kg bolus doses in normal CBA/J mice.</p> <p>Conclusions</p> <p>ADP 355 is a first-in-class adiponectin receptor agonist. Its biological activity, superior stability in biological fluids as well as acceptable toxicity profile indicate that the peptidomimetic represents a true lead compound for pharmaceutical development to replace low adiponectin levels in cancer and other malignancies.</p
    corecore