14 research outputs found

    DECLINE IN ORGANIC MATTER IN MINERAL SOILS

    No full text

    Soil protection for a sustainable future : options for a soil monitoring network for Ireland

    No full text
    The increased recognition of the importance of soil is reflected in the UN Post-2015 Development Agenda with sustainable development goals that directly and indirectly relate to soil quality and protection. Despite a lack of legally binding legislation for soil protection, the European Commission remains committed to the objective of soil protection. However, the achievement of a legally binding framework for soil protection relies on the implementation of a soil monitoring network (SMN) that can detect changes to soil quality over time. As beneficiaries do not pay for the provision of soil information, the options for soil monitoring are limited. The use of existing data sets should be considered first. Using Ireland as an example, this research explored the opportunities for a SMN for Ireland considering three existing national data sets. The options for a SMN are considered in terms of their spatial and stratified distribution, the parameters to be measured and an economic analysis of the options proposed. This research finds that for Ireland, either a 10 or a 16 km2 grid interval stratified by land use and drainage class offers the best potential in relation to the spatial distribution of existing data sets to reflect local data at a national level. With existing data, the stratified SIS data using the 16 km2 grid offers the best value for money, with baseline costs for analysis, excluding field costs, of between €706 481 and €2.8 million. Acknowledging the impossibility of measuring all parameters with ideal frequency, this study proposes a two-tier system for optimized monitoring frequency. Parameters must anticipate future policy requirements. Finally, the implementation of a SMN must be accompanied by standardized methods, defined thresholds and action mandates to maintain soil quality within allowable limits.</p

    The Impact of Conservation Conditions Versus Thermal Comfort of Visitors on the Energy Demand of a Museum Refurbished with Geothermal Systems: A Virtual Case Study

    No full text
    The energy demands of a museum are related mainly to the need for space heating and cooling, to provide adequate comfort to visitors. However, it is mandatory to ensure the correct microclimate for the conservation of perishable artifacts. The temperature and humidity conditions in the exhibition rooms must be compatible with each item. In this regard, each of them requires specific conditions, which sometimes could be vastly different from those of thermal comfort for people. The cultural heritage material is the parameter that most determines both the optimal average conditions and the allowed range of variability. Such requirements are widely described in the literature. Conversely, the energy demands, energy cost and comfort conditions are parameters that depend on the specific complexity of each case study, as they are linked to the local climate, the characteristics of the buildings and the energy policy of each country. Therefore, for the purpose of this research, a specific case study in the town of Split (Croatia) was selected. A simplified energy model of a museum was used to assess how much the microclimatic needs of the various items affect the energy demands. The boundary conditions were determined by the intersection between the need to preserve the cultural heritage and guarantee thermal comfort of visitors. Materials for which this compromise cannot be achieved have been identified. They represent the items that must be kept in air-conditioned showcases. Finally, the costs were estimated for different types of energy systems. In particular, the traditional generation systems were compared with the new geothermal systems explicitly developed for refurbishments during the EU H2020 project GEO4CIVHIC. © 2023, The Author(s), under exclusive license to Springer Nature Switzerland AG

    Soil carbon, multiple benefits

    No full text
    In March 2013, 40 leading experts from across the world gathered at a workshop, hosted by the European Commission, Directorate General Joint Research Centre, Italy, to discuss the multiple benefits of soil carbon as part of a Rapid Assessment Process (RAP) project commissioned by Scientific Committee on Problems of the Environment (SCOPE). This collaboration led to the publication of the SCOPE Series Volume 71 “Soil Carbon: Science, Management and Policy for Multiple Benefits”; which brings together the essential scientific evidence and policy opportunities regarding the global importance of soil carbon. This short communication summarises the key messages of the assessment including research and policy implications

    Multi-functional land use is not self-evident for European farmers: a critical review.

    No full text
    Soils perform more functions than primary productivity. Examples of these functions are the recycling of nutrients, the regulation and purification of water, the regulation of the climate, and supporting biodiversity. These abilities are generally referred to as the soil quality. Soil management that favors primary productivity may have positive and negative impacts on the other functions, and vice versa, depending on soil and climatic conditions. All these functions are under pressure, particularly in intensive agriculture. In the absence of mandatory regulations, most European farmers give limited attention to other functions than primary productivity in spite of recommendations by scientists, society and policy makers to acknowledge the ecosystem services provided by soils. The present paper analyses the underlying causes of this limited attention for the multi-functionality of soils by farmers. It is concluded that their focus on primary productivity may stem from (1) insufficient visible proof for soil degradation and benefits of preventive measures over curative measures, (2) limited awareness or conviction of long-term synergies, (3) insufficient remuneration of ecosystem services by society or compensation of yield penalties in favor of these services, (4) lacking trustworthy knowledge about and support for multi-functional soil management, and (5) absence of incentives and regulations on soil management and their enforcement. All these shortcomings need to be addressed by advisors, scientists, and policy makers, whilst acknowledging the need for underpinning and differentiation of incentives and regulations.</p

    Zealous Representation: The Pervasive Ethic

    No full text
    Closely related to the concept of client autonomy is the lawyer’s obligation to give “entire devotion to the interest of the client, warm zeal in the maintenance and defense of his rights and the exertion of [the lawyer’s] utmost learning and ability.” The ethic of zeal is a “traditional aspiration” that was already established in Abraham Lincoln’s day, and continues today to be “the fundamental principle of the law of lawyering” and “the dominant standard of lawyerly excellence.

    Current status, uncertainty and future needs in soil organic carbon monitoring

    No full text
    Increasing human demands on soil-derived ecosystemservices requires reliable data on global soil resources for sustainable development. The soil organic carbon (SOC) pool is a key indicator of soil quality as it affects essential biological, chemical and physical soil functions such as nutrient cycling, pesticide and water retention, and soil structure maintenance. However, information on the SOC pool, and its temporal and spatial dynamics is unbalanced. Even in well-studied regions with a pronounced interest in environmental issues information on soil carbon (C) is inconsistent. Several activities for the compilation of global soil C data are under way. However, different approaches for soil sampling and chemical analyses make even regional comparisons highly uncertain. Often, the procedures used so far have not allowed the reliable estimation of the total SOC pool, partly because the available knowledge is focused on not clearly defined upper soil horizons and the contribution of subsoil to SOC stocks has been less considered. Even more difficult is quantifying SOC pool changes over time. SOC consists of variable amounts of labile and recalcitrant molecules of plant, and microbial and animal origin that are often operationally defined. A comprehensively active soil expert community needs to agree on protocols of soil surveying and lab procedures towards reliable SOC pool estimates. Already established long-term ecological research sites, where SOC changes are quantified and the underlying mechanisms are investigated, are potentially the backbones for regional, national, and international SOC monitoring programs.JRC.H.5-Land Resources Managemen
    corecore