85 research outputs found

    Solid state synthesis and X-ray diffraction characterization of Pu 3+(1-2x)Pu4+xCa2+xPO4

    Get PDF
    In the framework of the 1991 French law concerning nuclear waste management, several studies have been carried out in order to elaborate crystalline matrices for specific immobilization of the radionuclides. In the case of high level and long-lived minor actinides (Np, Am and Cm), which are high level and long-lived radioactive elements, monazite, a light rare earth (Re) orthophosphate with general formula Re3+PO4 (with Re = La to Gd), has been proposed as a host matrix, thanks to its high resistance to self irradiation and its low solubility. Monazite crystallizes in the monoclinic space group P21/n. In this structure, trivalent cations (Re3+) could be substituted by an equivalent amount of bivalent (A2+) and tetravalent (B4+) cations, allowing the simultaneous incorporation of Am3+, Cm3+ and Np4+. According to Podor's work1, the limit of a tetravalent element incorporation in monazite is related to its size in the ninefold coordination (RIX)

    Synthesis and characterization of thorium-bearing britholites

    Get PDF
    RADIOCHIn the field of the immobilization of tri- and tetravalent minor actinides, apatites and especially britholites were already proposed as good candidates. In order to simulate tetravalent minor actinides, the incorporation of thorium, through dry chemical routes, was studied in britholite samples of general formula Ca9Nd1−xThx(PO4)5−x(SiO4)1+xF2. The study showed that the incorporation of thorium was effective whatever the thorium reagent used or the grinding conditions considered. Nevertheless, it appeared necessary to use mechanical grinding (30 Hz, 15 min) before heating treatment (T = 1400 °C, 6 h) to improve the reactivity of powders and the sample homogeneity. In these conditions, the incorporation of thorium in the britholite structure occurred above 1100 °C. The heating treatment at 1400 °C led to single phase and homogeneous compounds. This work also underlined the necessity to prefer the coupled substitution Click to view the MathML source instead of (Nd3+, F−) left right double arrow (Th4+, O2−) in order to prepare pure and single phase samples in all the range of composition examined

    Heavy ion induced damages in Ti3SiC2: study of the swelling

    Get PDF
    International audienceFor Generation IV reactors, and more particularly the Gas Fast Reactor, ternary carbide Ti3SiC2 is an interesting candidate for the application as fuel coating; actually, it has the advantage to combine some properties of metals with those generally attributed to ceramics. Unfortunately, few data are available on its behavior under irradiation. In this study, we attempted to measure and to understand the origin of the swelling induced by nuclear collisions. Thus, it seems that Ti3SiC2 irradiated at room temperature swell less than silicon carbide and that critical amorphization temperature is less than room temperature

    Heavy ions induced damages in Ti3SiC2: effect of irradiation temperature

    Get PDF
    International audienceThanks to their refractoriness, carbides are sensed as fuel coating for the IVth generation of reactors. Among those studied, the Ti3SiC2 ternary compound can be distinguished for its noteworthy mechanical properties: the nanolamellar structure imparts to this material some softness as well as better toughness than other classical carbides such as SiC or TiC. However, under irradiation, its behaviour is still unknown. In order to understand this behaviour, specimens were irradiated with heavy ions of different energies, then characterised. The choice of energies used allowed separation of the effects of nuclear interactions from those of electronic ones. Thus, AFM, SEM and XRD techniques allowed to note an important spoiling due to nuclear collision whereas electronic interactions would induce the formation of hills and the expansion of the unit cell. Irradiations at higher temperatures allowed to study the effect of temperature on these results

    Formation of nanosized hills on Ti3SiC2 oxide layer irradiated with swift heavy ions

    Get PDF
    International audienceThe Ti3SiC2 refractory compound that combines properties of both metals and ceramics is a fuel cladding candidate under investigation for Gas-cooled Fast Reactor. Its behavior under swift heavy ion irradiation (Xe ions, 92 MeV, 1019 m−2) was investigated. Significant and unexpected surface changes have been highlighted: hills have been observed by AFM on the surface of Ti3SiC2. Such a topographic modification has never been observed in other materials irradiated in similar conditions. The characterization of these hills by both XPS and X-TEM has highlighted that the surface modifications do not appear in Ti3SiC2 but in the amorphous oxide layer located on the sample surface before irradiation. Moreover, the thickness of this oxide layer grew under irradiation dose. The comparison with previous irradiations has led to the conclusion that this surface modification stems from electronic interactions in this amorphous layer, and that there is a threshold in the electronic stopping power to overcome to form hills

    Dommages d'irradiation dans Ti3SiC2 : Effets des interactions nucléaires et électroniques

    Get PDF
    Comme pour tout système nucléaire, le concept du combustible pour les réacteurs de IVème génération consiste en des pastilles de combustible conditionnées dans une matrice qui doit contenir les produits de fission. De par leur excellente réfractarité, les carbures sont pressentis pour constituer cette barrière de confinement. Parmi ceux étudiés, le ternaire Ti3SiC2 se distingue par ses propriétés mécaniques particulières : en effet, sa structure nanolamellaire lui confère une certaine plasticité ainsi qu'une ténacité supérieure aux carbures classiques tels que SiC ou TiC. Cependant, son comportement sous irradiation n'est pas connu. Afin d'appréhender ce comportement, des échantillons ont été irradiés aux ions lourds de différentes énergies puis caractérisés. Le panel d'énergies utilisé a permis de discriminer l'effet des interactions nucléaires – pulvérisation – des interactions électroniques – apparition de monticules et dilatation de la maille cristalline

    Irradiation damages in Ti3SiC2: formation and characterisation of the oxide layer

    Get PDF
    International audienceThe concept of the fuel for the IVth generation reactors should consist of fuel pellets surrounded with a matrix that must contain fission products. Thanks to their interesting thermo-mechanical properties, carbides are sensed to become this matrix. Among the studied carbides, Ti3SiC2 can be distinguished; actually, its nano-laminated structure confers to it some softness as well as a better toughness than classical carbides like SiC or TiC. However, before to use this remarkable carbide, a study of its behaviour under irradiation must be led. Thus, some characterisations were performed on 75 MeV Kr irradiated specimens. They allowed to underline that TiO2 (formed on the surface of Ti3SiC2 during the surface preparation) seems to be sputtered by irradiation, and that the unit cell of Ti3SiC2 is dilated along c axis

    Dommages d'irradiation dans Ti3SiC2

    Get PDF
    Les carbures, de par leurs propriétés remarquables, sont pressentis comme matériau de structure autour du combustible du réacteur de génération IV. Parmi ceux étudiés, Ti3SiC2 se distingue car il associe les propriétés des céramiques à celles des métaux. Cependant, son comportement sous irradiation n'est pas connu. Des caractérisations ont été réalisées sur des échantillons irradiés aux ions Kr à 75 MeV. Elles ont permis de mettre en exergue que TiO2 (formé en surface de Ti3SiC2) est pulvérisé par l'irradiation et que la maille cristalline de Ti3SiC2 se dilate suivant c

    Damages induced by heavy ions in titanium silicon carbide: effects of nuclear and electronic interactions at room temperature

    Get PDF
    International audienceThanks to their refractoriness, carbides are sensed as fuel coating for the IVth generation of reactors. Among those studied, the Ti3SiC2 ternary compound can be distinguished for its noteworthy mechanical properties: the nanolamellar structure imparts to this material some softness as well as better toughness than other classical carbides such as SiC or TiC. However, under irradiation, its behaviour is still unknown. In order to understand this behaviour, specimens were irradiated with heavy ions of different energies, then characterised. The choice of energies used allowed separation of the effects of nuclear interactions from those of electronic ones

    Solid-State Synthesis of Monazite-type Compounds Containing Tetravalent Elements

    Get PDF
    International audienceOn the basis of optimized grinding/heating cycles developed for several phosphate-based ceramics, the preparation of brabantite and then monazite/brabantite solid solutions loaded with tetravalent thorium, uranium, and cerium (as a plutonium surrogate) was examined versus the heating temperature. The chemical reactions and transformations occurring when heating the initial mixtures of AnO2/CeO2, CaHPO4·2H2O (or CaO), and NH4H2PO4 were identified through X-ray diffraction (XRD) and thermogravimetric/differential thermal analysis experiments. The incorporation of thorium, which presents only one stabilized oxidation state, occurs at 1100 °C. At this temperature, all the thorium−brabantite samples appear to be pure and single phase as suggested by XRD, electron probe microanalyses, and μ-Raman spectroscopy. By the same method, tetravalent uranium can be also stabilized in uranium−brabantite, i.e., Ca0.5U0.5PO4, after heating at 1200 °C. Both brabantites, Ca0.5Th0.5PO4 and Ca0.5U0.5PO4, begin to decompose when increasing the temperature to 1400 and 1300 °C, respectively, leading to a mixture of CaO and AnO2 by the volatilization of P4O10. In contrast to the cases of thorium and uranium, cerium(IV) is not stabilized during the heating treatment at high temperature. Indeed, the formation of Ca0.5Ce0.5PO4 appears impossible, due to the partial reduction of cerium(IV) into cerium(III) above 840 °C. Consequently, the systems always appear polyphase, with compositions of CeIII1-2xCeIVxCaxPO4 and Ca2P2O7. The same conclusion can be also given when discussing the incorporation of cerium(IV) into La1-2xCeIIIx-yCeIVyCay(PO4)1-x+y. This incomplete incorporation of cerium(IV) confirms the results obtained when trying to stabilize tetravalent plutonium in Ca0.5PuIV0.5PO4 samples
    corecore