52 research outputs found

    Clostridium difficile infection.

    Get PDF
    Infection of the colon with the Gram-positive bacterium Clostridium difficile is potentially life threatening, especially in elderly people and in patients who have dysbiosis of the gut microbiota following antimicrobial drug exposure. C. difficile is the leading cause of health-care-associated infective diarrhoea. The life cycle of C. difficile is influenced by antimicrobial agents, the host immune system, and the host microbiota and its associated metabolites. The primary mediators of inflammation in C. difficile infection (CDI) are large clostridial toxins, toxin A (TcdA) and toxin B (TcdB), and, in some bacterial strains, the binary toxin CDT. The toxins trigger a complex cascade of host cellular responses to cause diarrhoea, inflammation and tissue necrosis - the major symptoms of CDI. The factors responsible for the epidemic of some C. difficile strains are poorly understood. Recurrent infections are common and can be debilitating. Toxin detection for diagnosis is important for accurate epidemiological study, and for optimal management and prevention strategies. Infections are commonly treated with specific antimicrobial agents, but faecal microbiota transplants have shown promise for recurrent infections. Future biotherapies for C. difficile infections are likely to involve defined combinations of key gut microbiota

    Effects of europium polyoxometalate encapsulated in silica nanoparticles (nanocarriers) in soil invertebrates

    No full text
    Polyoxometalates (POMs) are metal oxo clusters that have been investigated for several applications in material sciences, catalysis, and biomedicine; these gained increasing interest in the field of nanotechnology as nanocarriers for drug delivery. Associated to the increasing applications, there is the need for information regarding the effects on the environment of these compounds, which is completely absent in the literature. In the present study, the effects of europium polyoxometalates encapsulated into silica nanoparticles (Eu-POM/SiO2 NPs) were assessed on the soil representative Enchytraeus crypticus. The individual materials were also assessed (Eu-POMs and SiO2 NPs). Toxicity was evaluated in various test media with increasing complexity: water, soil/water extracts, and soil. Toxicity was only observed for Eu-POM/SiO2 NPs and in the presence of soil components. Despite the fact that effects were observed for concentrations higher than current predicted environmental concentration (PEC), attention should be given to the growing use of these compounds. The present study shows the importance of assessing the effects in soil media, also compared to water. Moreover, results of \"no effect\" are critically needed and often unpublished. The present study can contribute to the improvement of the OECD guidelines for safety of manufactured nanomaterials on environmental toxicity in the soil compartment providing an improved test alternative
    • …
    corecore