16 research outputs found

    Perinatal Derivatives: Where Do We Stand? A Roadmap of the Human Placenta and Consensus for Tissue and Cell Nomenclature

    Get PDF
    Progress in the understanding of the biology of perinatal tissues has contributed to the breakthrough revelation of the therapeutic effects of perinatal derivatives (PnD), namely birth-associated tissues, cells, and secreted factors. The significant knowledge acquired in the past two decades, along with the increasing interest in perinatal derivatives, fuels an urgent need for the precise identification of PnD and the establishment of updated consensus criteria policies for their characterization. The aim of this review is not to go into detail on preclinical or clinical trials, but rather we address specific issues that are relevant for the definition/characterization of perinatal cells, starting from an understanding of the development of the human placenta, its structure, and the different cell populations that can be isolated from the different perinatal tissues. We describe where the cells are located within the placenta and their cell morphology and phenotype. We also propose nomenclature for the cell populations and derivatives discussed herein. This review is a joint effort from the COST SPRINT Action (CA17116), which broadly aims at approaching consensus for different aspects of PnD research, such as providing inputs for future standards for the processing and in vitro characterization and clinical application of PnD.Austrian Science Fund (FWF) DOC 31-B26Medical University GrazUniversita Cattolica del Sacro CuorePRIN 2017 program of Italian Ministry of Research and University (MIUR) 2017RSAFK7Ministry of Health, Italy GR-2018-12366992Slovenian Research Agency - Slovenia P3-0108MRIC UL IP-0510Plan Estatal de Investigacion Cientifica y Tecnica y de InnovacionISCIII Subdireccion General de Evaluacion y Fomento de la InvestigacionMinisterio de Economia y Competitividad, Spain PI16/01642European Union (EU)European Community (EC)German Research Foundation (DFG) GE-2223/2-

    Targeting the Neurokinin Receptor 1 with Aprepitant: A Novel Antipruritic Strategy

    Get PDF
    Chronic pruritus is a global clinical problem with a high impact on the quality of life and lack of specific therapies. It is an excruciating and frequent symptom of e.g. uncurable renal, liver and skin diseases which often does not respond to conventional treatment with e.g. antihistamines. Therefore antipruritic therapies which target physiological mechanisms of pruritus need to be developed. Substance P (SP) is a major mediator of pruritus. As it binds to the neurokinin receptor 1 (NKR1), we evaluated if the application of a NKR1 antagonist would significantly decrease chronic pruritus.Twenty hitherto untreatable patients with chronic pruritus (12 female, 8 male; mean age, 66.7 years) were treated with the NKR1 antagonist aprepitant 80 mg for one week. 16 of 20 patients (80%) experienced a considerable reduction of itch intensity, as assessed by the visual analog scale (VAS, range 0 to 10). Considering all patients, the mean value of pruritus intensity was significantly reduced from 8.4 VAS points (SD +/-1.7) before treatment to 4.9 VAS points (SD +/-3.2) (p<0.001, CI 1.913-5.187). Patients with dermatological diseases (e.g. atopic diathesis, prurigo nodularis) had the best profit from the treatment. Side-effects were mild (nausea, vertigo, and drowsiness) and only occurred in three patients.The high response rate in patients with therapy refractory pruritus suggests that the NKR1 antagonist aprepitant may indeed exhibit antipruritic effects and may present a novel, effective treatment strategy based on pathophysiology of chronic pruritus. The results are promising enough to warrant confirming the efficacy of NKR1 antagonists in a randomized, controlled clinical trial

    Effects of Lactobacillus paracasei CNCM I-4034, Bifidobacterium breve CNCM I-4035 and Lactobacillus rhamnosus CNCM I-4036 on Hepatic Steatosis in Zucker Rats

    Get PDF
    We have previously described the safety and immunomodulatory effects of Lactobacillus paracasei CNCM I-4034, Bifidobacterium breve CNCM I-4035 and Lactobacillus rhamnosus CNCM I-4036 in healthy volunteers. The scope of this work was to evaluate the effects of these probiotic strains on the hepatic steatosis of obese rats. We used the Zucker rat as a genetic model of obesity. Zucker-Leprfa/fa rats received one of three probiotic strains, a mixture of L. paracasei CNCM I-4034 and B. breve CNCM I-4035, or a placebo for 30 days. An additional group of Zucker-lean+/fa rats received a placebo for 30 days. No alterations in intestinal histology, in the epithelial, lamina propria, muscular layers of the ileal or colonic mucosa, or the submucosae, were observed in any of the experimental groups. Triacylglycerol content decreased in the liver of Zucker-Leprfa/fa rats that were fed L. rhamnosus, B. breve, or the mixture of B. breve and L. paracasei. Likewise, the area corresponding to neutral lipids was significantly smaller in the liver of all four groups of Zucker-Leprfa/fa rats that received probiotics than in rats fed the placebo. Zucker-Leprfa/fa rats exhibited significantly greater serum LPS levels than Zucker-lean+/fa rats upon administration of placebo for 30 days. In contrast, all four groups of obese Zucker-Leprfa/fa rats that received LAB strains exhibited serum LPS concentrations similar to those of Zucker-lean+/fa rats. Serum TNF-α levels decreased in the Zucker-Leprfa/fa rats that received B. breve, L. rhamnosus, or the mixture, whereas L. paracasei feeding decreased IL-6 levels in the serum of Zucker-Leprfa/fa rats. In conclusion, the probiotic strains reduced hepatic steatosis in part by lowering serum LPS, and had an anti-inflammatory effect in obese Zucker rats.Part of the research currently in progress in the authors' laboratory is funded by the company Hero Spain, S. A. through the grant #3545 managed by the Fundacion General Empresa-Universidad de Granada

    Development of chronic colitis is dependent on the cytokine MIF

    No full text
    The cytokine macrophage-migration inhibitory factor (MIF) is secreted by a number of cell types upon induction by lipopolysaccharide (LPS). Because colitis is dependent on interplay between the mucosal immune system and intestinal bacteria, we investigated the role of MIF in experimental colitis. MIF-deficient mice failed to develop disease, but reconstitution of MIF-deficient mice with wild-type innate immune cells restored colitis. In addition, established colitis could be treated with anti-MIF immunoglobulins. Thus, murine colitis is dependent on continuous MIF production by the innate immune system. Because we found increased plasma MIF concentrations in patients with Crohn's disease, these data suggested that MIF is a new target for intervention in Crohn's disease
    corecore