81 research outputs found

    Variation in cytokine genes can contribute to severity of acetabular osteolysis and risk for revision in patients with ABG 1 total hip arthroplasty: a genetic association study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The differences in total hip arthroplasty (THA) survivorship may be influenced by individual susceptibility to periprosthetic osteolysis. This may be driven by functional polymorphisms in the genes for cytokines and cytokine receptors involved in the development of osteolysis in THA, thereby having an effect on the individual's phenotype.</p> <p>Methods</p> <p>We performed a study on 22 single-nucleotide polymorphisms (SNPs) for 11 cytokines and two cytokine receptor candidate genes for association with severity of acetabular osteolysis and risk to failure in THA. Samples from 205 unrelated Caucasian patients with cementless type THA (ABG 1) were investigated. Distribution of investigated SNP variants between the groups of mild and severe acetabular osteolysis was determined by univariate and multivariate analysis. Time-dependent output variables were analyzed by the Cox hazards model.</p> <p>Results</p> <p>Univariate analysis showed: 1) <it>TNF</it>-238*A allele was associated with severe osteolysis (odds ratio, OR = 6.59, <it>p </it>= 0.005, population attributable risk, PAR 5.2%); 2) carriers of the <it>IL6</it>-174*G allele were 2.5 times more prone to develop severe osteolysis than non-carriers (OR = 2.51, <it>p </it>= 0.007, PAR = 31.5%); 3) the carriage of <it>IL2</it>-330*G allele was associated with protection from severe osteolysis (OR = 0.55, <it>p </it>= 0.043). Based on logistic regression, the alleles <it>TNF</it>-238*A and <it>IL6</it>-174*G were independent predictors for the development of severe acetabular osteolysis. Carriers of <it>TNF</it>-238*A had increased cumulative hazard of THA failure according to Cox model (<it>p </it>= 0.024). In contrast, <it>IL2</it>-330*G allele predicted lower cumulative hazard of THA failure (<it>p </it>= 0.019).</p> <p>Conclusion</p> <p>Genetic variants of proinflammatory cytokines TNF-alpha and IL-6 confer susceptibility to severe OL. In this way, presence of the minor <it>TNF </it>allele could increase the cumulative risk of THA failure. Conversely, SNP in the <it>IL2 </it>gene may protect carriers from the above THA complications.</p

    Meta-Analysis of Genome-Wide Association Studies in Celiac Disease and Rheumatoid Arthritis Identifies Fourteen Non-HLA Shared Loci

    Get PDF
    Epidemiology and candidate gene studies indicate a shared genetic basis for celiac disease (CD) and rheumatoid arthritis (RA), but the extent of this sharing has not been systematically explored. Previous studies demonstrate that 6 of the established non-HLA CD and RA risk loci (out of 26 loci for each disease) are shared between both diseases. We hypothesized that there are additional shared risk alleles and that combining genome-wide association study (GWAS) data from each disease would increase power to identify these shared risk alleles. We performed a meta-analysis of two published GWAS on CD (4,533 cases and 10,750 controls) and RA (5,539 cases and 17,231 controls). After genotyping the top associated SNPs in 2,169 CD cases and 2,255 controls, and 2,845 RA cases and 4,944 controls, 8 additional SNPs demonstrated P<5×10−8 in a combined analysis of all 50,266 samples, including four SNPs that have not been previously confirmed in either disease: rs10892279 near the DDX6 gene (Pcombined = 1.2×10−12), rs864537 near CD247 (Pcombined = 2.2×10−11), rs2298428 near UBE2L3 (Pcombined = 2.5×10−10), and rs11203203 near UBASH3A (Pcombined = 1.1×10−8). We also confirmed that 4 gene loci previously established in either CD or RA are associated with the other autoimmune disease at combined P<5×10−8 (SH2B3, 8q24, STAT4, and TRAF1-C5). From the 14 shared gene loci, 7 SNPs showed a genome-wide significant effect on expression of one or more transcripts in the linkage disequilibrium (LD) block around the SNP. These associations implicate antigen presentation and T-cell activation as a shared mechanism of disease pathogenesis and underscore the utility of cross-disease meta-analysis for identification of genetic risk factors with pleiotropic effects between two clinically distinct diseases

    Anti-citrullinated peptide antibody-negative RA is a genetically distinct subset: a definitive study using only bone-erosive ACPA-negative rheumatoid arthritis

    Get PDF
    Objectives. ACPA is a highly specific marker for RA. It was recently reported that ACPA can be used to classify RA into two disease subsets, ACPA-positive and ACPA-negative RA. ACPA-positive RA was found to be associated with the HLA-DR shared epitope (SE), but ACPA negative was not. However, the suspicion remained that this result was caused by the ACPA-negative RA subset containing patients with non-RA diseases. We examined whether this is the case even when possible non-RA ACPA-negative RA patients were excluded by selecting only patients with bone erosion

    A Large-Scale Rheumatoid Arthritis Genetic Study Identifies Association at Chromosome 9q33.2

    Get PDF
    Rheumatoid arthritis (RA) is a chronic, systemic autoimmune disease affecting both joints and extra-articular tissues. Although some genetic risk factors for RA are well-established, most notably HLA-DRB1 and PTPN22, these markers do not fully account for the observed heritability. To identify additional susceptibility loci, we carried out a multi-tiered, case-control association study, genotyping 25,966 putative functional SNPs in 475 white North American RA patients and 475 matched controls. Significant markers were genotyped in two additional, independent, white case-control sample sets (661 cases/1322 controls from North America and 596 cases/705 controls from The Netherlands) identifying a SNP, rs1953126, on chromosome 9q33.2 that was significantly associated with RA (ORcommon = 1.28, trend Pcomb = 1.45E-06). Through a comprehensive fine-scale-mapping SNP-selection procedure, 137 additional SNPs in a 668 kb region from MEGF9 to STOM on 9q33.2 were chosen for follow-up genotyping in a staged-approach. Significant single marker results (Pcomb<0.01) spanned a large 525 kb region from FBXW2 to GSN. However, a variety of analyses identified SNPs in a 70 kb region extending from the third intron of PHF19 across TRAF1 into the TRAF1-C5 intergenic region, but excluding the C5 coding region, as the most interesting (trend Pcomb: 1.45E-06 → 5.41E-09). The observed association patterns for these SNPs had heightened statistical significance and a higher degree of consistency across sample sets. In addition, the allele frequencies for these SNPs displayed reduced variability between control groups when compared to other SNPs. Lastly, in combination with the other two known genetic risk factors, HLA-DRB1 and PTPN22, the variants reported here generate more than a 45-fold RA-risk differential

    A Genome-Wide Homozygosity Association Study Identifies Runs of Homozygosity Associated with Rheumatoid Arthritis in the Human Major Histocompatibility Complex

    Get PDF
    Rheumatoid arthritis (RA) is a chronic inflammatory disorder with a polygenic mode of inheritance. This study examined the hypothesis that runs of homozygosity (ROHs) play a recessive-acting role in the underlying RA genetic mechanism and identified RA-associated ROHs. Ours is the first genome-wide homozygosity association study for RA and characterized the ROH patterns associated with RA in the genomes of 2,000 RA patients and 3,000 normal controls of the Wellcome Trust Case Control Consortium. Genome scans consistently pinpointed two regions within the human major histocompatibility complex region containing RA-associated ROHs. The first region is from 32,451,664 bp to 32,846,093 bp (−log10(p)>22.6591). RA-susceptibility genes, such as HLA-DRB1, are contained in this region. The second region ranges from 32,933,485 bp to 33,585,118 bp (−log10(p)>8.3644) and contains other HLA-DPA1 and HLA-DPB1 genes. These two regions are physically close but are located in different blocks of linkage disequilibrium, and ∼40% of the RA patients' genomes carry these ROHs in the two regions. By analyzing homozygote intensities, an ROH that is anchored by the single nucleotide polymorphism rs2027852 and flanked by HLA-DRB6 and HLA-DRB1 was found associated with increased risk for RA. The presence of this risky ROH provides a 62% accuracy to predict RA disease status. An independent genomic dataset from 868 RA patients and 1,194 control subjects of the North American Rheumatoid Arthritis Consortium successfully validated the results obtained using the Wellcome Trust Case Control Consortium data. In conclusion, this genome-wide homozygosity association study provides an alternative to allelic association mapping for the identification of recessive variants responsible for RA. The identified RA-associated ROHs uncover recessive components and missing heritability associated with RA and other autoimmune diseases

    Genetics of rheumatoid arthritis: what have we learned?

    Get PDF
    Rheumatoid arthritis (RA) is a chronic autoimmune disease affecting 0.5–1% of the population worldwide. The disease has a heterogeneous character, including clinical subsets of anti-citrullinated protein antibody (ACPA)-positive and APCA-negative disease. Although the pathogenesis of RA is poorly understood, progress has been made in identifying genetic factors that contribute to the disease. The most important genetic risk factor for RA is found in the human leukocyte antigen (HLA) locus. In particular, the HLA molecules carrying the amino acid sequence QKRAA, QRRAA, or RRRAA at positions 70–74 of the DRβ1 chain are associated with the disease. The HLA molecules carrying these “shared epitope” sequences only predispose for ACPA-positive disease. More than two decades after the discovery of HLA-DRB1 as a genetic risk factor, the second genetic risk factor for RA was identified in 2003. The introduction of new techniques, such as methods to perform genome-wide association has led to the identification of more than 20 additional genetic risk factors within the last 4 years, with most of these factors being located near genes implicated in immunological pathways. These findings underscore the role of the immune system in RA pathogenesis and may provide valuable insight into the specific pathways that cause RA
    corecore