61 research outputs found

    Miocene tectonics of the Maramures area (Northern Romania): implications for the Mid-Hungarian fault zone

    Get PDF
    The interplay between the emplacement of crustal blocks (e.g. "ALCAPA”, "Tisza”, "Dacia”) and subduction retreat is a key issue for understanding the Miocene tectonic history of the Carpathians. Coeval thrusting and basin formation is linked by transfer zones, such as the Mid-Hungarian fault zone, which seperates ALCAPA from Tisza-Dacia. The presented study provides new kinematic data from this transfer zone. Early Burdigalian (20.5 to ∼18.5Ma) SE-directed thrusting of the easternmost tip of ALCAPA (Pienides), over Tisza-Dacia is linked to movements along the Mid-Hungarian fault zone and the Periadriatic line, accommodating the lateral extrusion of ALCAPA. Minor Late Burdigalian (∼18.5 to 16Ma) NE-SW extension is interpreted as related to back-arc extension. Post Burdigalian (post-16Ma) NE-SW shortening and NW-SE extension correlate with "soft collision” of Tisza-Dacia with the European foreland coupled with southward migration of active subduction. During this stage the Bogdan-Voda and Dragos-Voda faults were kinematically linked to the Mid-Hungarian fault zone. Sinistral transpression (16 to 12Ma) at the Bogdan-Voda fault was followed by sinistral transtension (12-10Ma) along the coupled Bogdan-Dragos-Voda fault system. During the transtensional stage left-lateral offset was reduced eastwards by SW trending normal faults, the fault system finally terminating in an extensional horse-tail spla

    The south-western Black Forest and the Upper Rhine Graben Main Border Fault: thermal history and hydrothermal fluid flow

    Get PDF
    The thermal history of the south-westernmost Black Forest (Germany) and the adjacent Upper Rhine Graben were constrained by a combination of apatite and zircon fission-track (FT) and microstructural analyses. After intrusion of Palaeozoic granitic plutons in the Black Forest, the thermal regime of the studied area re-equilibrated during the Late Permian and the Mesozoic, interrupted by enhanced hydrothermal activity during the Jurassic. At the eastern flank of the Upper Rhine Graben along the Main Border Fault the analysed samples show microstructural characteristics related to repeated tectonic and hydrothermal activities. The integration of microstructural observations of the cataclastic fault gouge with the FT data identifies the existence of repeated tectonic-related fluid flow events characterised by different thermal conditions. The older took place during the Variscan and/or Mesozoic time at temperatures lower than 280°C, whereas the younger was probably contemporary with the Cenozoic rifting of the Upper Rhine Graben at temperatures not higher than 150°

    The Alpine-Carpathian-Dinaridic orogenic system: correlation and evolution of tectonic units

    Get PDF
    A correlation of tectonic units of the Alpine-Carpathian-Dinaridic system of orogens, including the substrate of the Pannonian and Transylvanian basins, is presented in the form of a map. Combined with a series of crustal-scale cross sections this correlation of tectonic units yields a clearer picture of the threedimensional architecture of this system of orogens that owes its considerable complexity to multiple overprinting of earlier by younger deformations. The synthesis advanced here indicates that none of the branches of the Alpine Tethys and Neotethys extended eastward into the Dobrogea Orogen. Instead, the main branch of the Alpine Tethys linked up with the Meliata- Maliac-Vardar branch of the Neotethys into the area of the present-day Inner Dinarides. More easterly and subsidiary branches of the Alpine Tethys separated Tisza completely, and Dacia partially, from the European continent. Remnants of the Triassic parts of Neotethys (Meliata-Maliac) are preserved only as ophiolitic mélanges present below obducted Jurassic Neotethyan (Vardar) ophiolites. The opening of the Alpine Tethys was largely contemporaneous with the Latest Jurassic to Early Cretaceous obduction of parts of the Jurassic Vardar ophiolites. Closure of the Meliata-Maliac Ocean in the Alps and West Carpathians led to Cretaceous-age orogeny associated with an eclogitic overprint of the adjacent continental margin. The Triassic Meliata- Maliac and Jurassic Western and Eastern Vardar ophiolites were derived from one single branch of Neotethys: the Meliata-Maliac-Vardar Ocean. Complex geometries resulting from out-of-sequence thrusting during Cretaceous and Cenozoic orogenic phases underlay a variety of multi-ocean hypotheses, that were advanced in the literature and that we regard as incompatible with the field evidence. The present-day configuration of tectonic units suggests that a former connection between ophiolitic units in West Carpathians and Dinarides was disrupted by substantial Miocene-age dislocations along the Mid-Hungarian Fault Zone, hiding a former lateral change in subduction polarity between West Carpathians and Dinarides. The SW-facing Dinaridic Orogen, mainly structured in Cretaceous and Palaeogene times, was juxtaposed with the Tisza and Dacia Mega-Units along a NW-dipping suture (Sava Zone) in latest Cretaceous to Palaeogene times. The Dacia Mega-Unit (East and South Carpathian Orogen, including the Carpatho-Balkan Orogen and the Biharia nappe system of the Apuseni Mountains), was essentially consolidated by E-facing nappe stacking during an Early Cretaceous orogeny, while the adjacent Tisza Mega-Unit formed by NW-directed thrusting (in present-day coordinates) in Late Cretaceous times. The polyphase and multi-directional Cretaceous to Neogene deformation history of the Dinarides was preceded by the obduction of Vardar ophiolites onto to the Adriatic margin (Western Vardar Ophiolitic Unit) and parts of the European margin (Eastern Vardar Ophiolitic Unit) during Late Jurassic to Early Cretaceous times

    Spatial correlation bias in late-Cenozoic erosion histories derived from thermochronology

    Get PDF
    International audienceThe potential link between erosion rates at the Earth's surface and changes in global climate has intrigued geoscientists for decades1,2 because such a coupling has implications for the influence of silicate weathering3,4 and organic-carbon burial5 on climate and for the role of Quaternary glaciations in landscape evolution1,6. A global increase in late-Cenozoic erosion rates in response to a cooling, more variable climate has been proposed on the basis of worldwide sedimentation rates7. Other studies have indicated, however, that global erosion rates may have remained steady, suggesting that the reported increases in sediment-accumulation rates are due to preservation biases, depositional hiatuses and varying measurement intervals8-10. More recently, a global compilation of thermochronology data has been used to infer a nearly twofold increase in the erosion rate in mountainous landscapes over late-Cenozoic times6. It has been contended that this result is free of the biases that affect sedimentary records11, although others have argued that it contains biases related to how thermochronological data are averaged12 and to erosion hiatuses in glaciated landscapes13. Here we investigate the 30 locations with reported accelerated erosion during the late Cenozoic6. Our analysis shows that in 23 of these locations, the reported increases are a result of a spatial correlation bias—that is, combining data with disparate exhumation histories, thereby converting spatial erosion-rate variations into temporal increases. In four locations, the increases can be explained by changes in tectonic boundary conditions. In three cases, climatically induced accelerations are recorded, driven by localized glacial valley incision. Our findings suggest that thermochronology data currently have insufficient resolution to assess whether late-Cenozoic climate change affected erosion rates on a global scale. We suggest that a synthesis of local findings that include location-specific information may help to further investigate drivers of global erosion rates

    Offshore granulites from the Bay of Biscay margins : fission tracks constrain a Proterozoic to Tertiary thermal history

    No full text
    Terra Nova, v. 15, n. 5, p. 337-342, 2003. http://dx.doi.org/10.1046/j.1365-3121.2003.00502.xInternational audienc

    The impact of the Jurassic hydrothermal activity on zircon fission track data from the southern Upper Rhine Graben area

    No full text
    The influence of the Jurassic hydrothermal activity on the interpretation of fission track (FT) data from the southern Upper Rhine Graben (URG) is elaborated by means of new zircon FT analyses on samples with known U/Pb crystallisation ages. Zircon FT central ages display a wide spectrum from 162 ± 14 Ma to 247 ± 22 Ma. The combination of the U/Pb ages, independent geologic evidence (such as Mesozoic subsidence history, timing of hydrothermal activity, and apatite FT ages) and the zircon FT data unambigously indicate a Jurassic thermal overprint in the investigated area. It is suggested that circulating hydrothermal fluids with temperatures in the order of 200-250 °C were responsible for the observed thermal anomaly. The Jurassic hydrothermal fluid migration appears to have been related to a heating event on a regional scale. Inferences from FT analyses related to burial or denudation history have to take into account how such hydrothermal events affect the FT system, including a changing geothermal gradient with time
    corecore