19 research outputs found

    Modeling of the behavior of H2 vehicle users. A bilevel model for the location of hydrogen refueling stations.

    Full text link
    This paper addresses the problem of estimating the infrastructure to be made available for refueling alternative fuel vehicles as a function of the profitability thresholds required by the investment. A methodology has been devised based on sales forecasts for alternative fuel vehicles. These methods use discrete choice models in which the factor of refueling infrastructure, rather than being considered simply as one more attribute of the model, acts as a constraint on the choice set for vehicle buyers. This methodology is used to estimate the infrastructure of hydrogen refueling stations and electricity charging stations for Spain (8; 112 population centers) in 2030. Evolution of fuel cell vehicles over the years2016 and 2030 is also estimated and compared with forecasts for countries such as France,Germany and the United Kingdom

    Metodología para la introducción progresiva del hidrógeno como combustible alternativo en el transporte privado : Aplicación al caso español

    Full text link
    La movilidad y el transporte Español, dependen enormemente del petróleo importado. El suministro de petróleo y, por tanto, la movilidad dependen en gran medida de regiones políticamente inestables, circunstancia que suscita preocupaciones sobre la seguridad del suministro. La repercusión de la dependencia del petróleo en la economía Española es demasiado grande para ignorarla, teniendo que actuar para poner fin a esta situación. Desarrollar una estrategia en el sector del transporte, que sustituya progresivamente al petróleo por combustibles alternativos y cree las infraestructuras necesarias, podría suponer ahorros en la factura de las importaciones de petróleo, a la vez que una mayor seguridad de suministro y reducción de los gases de efecto invernadero. Como combustibles alternativos entendemos los combustibles o fuentes de energía que sustituyen, al menos en parte, a los combustibles fósiles clásicos como fuente de energía en los transportes y que pueden contribuir a la descarbonización de estos últimos y a mejorar el comportamiento medioambiental del sector transporte. Dentro de los diferentes combustibles alternativos, la presente tesis doctoral se centra en el hidrógeno. La DIRECTIVA 2014/94/UE DEL PARLAMENTO EUROPEO Y DEL CONSEJO de 22 de octubre de 2014 relativa a la implantación de una infraestructura para los combustibles alternativos, establece un marco común de medidas para la implantación de una infraestructura para los combustibles alternativos en la Unión Europea, a fin de minimizar la dependencia de los transportes respecto del petróleo y mitigar el impacto medioambiental del transporte. Dicha Directiva establece requisitos mínimos para la creación de una infraestructura para los combustibles alternativos, incluyendo puntos de recarga para vehículos eléctricos y puntos de repostaje de gas natural (licuado y comprimido) y de hidrógeno, que se habrán de aplicar mediante los marcos de acción nacionales de los Estados miembros, así como mediante las especificaciones técnicas comunes sobre dichos puntos de recarga y de repostaje, y los requisitos de información a los usuarios. En la presente tesis doctoral, se pretende dar respuesta a lo planteado por la Directiva 2014/94/UE, en lo referente a desarrollar un marco de acción nacional para el hidrógeno como combustible alternativo, mediante el desarrollo una metodología que permita determinar el número de infraestructuras de repostaje que han de incluir hidrógeno como combustible alternativo y su localización exacta, en cada periodo de tiempo t, considerando que la duración del periodo es de un año. Adicionalmente se define la política de subsidios y se optimiza la inversión que el Estado ha de realizar, en concepto de subsidio, para conseguir que se introduzca el hidrógeno como combustible alternativo, teniendo que desarrollarse de forma paulatina, acorde a las necesidades y sostenible en el tiempo una vez que finalice el periodo de subsidios. Para diseñar la política de subsidios óptima, comentada anteriormente, se establece un modelo de equilibrio de Stackelberg, de forma que se favorezca la penetración en el mercado de la movilidad sostenible de las infraestructuras que incorporan el hidrógeno como combustible alternativo. El Estado Español desempeña el papel de líder y los propietarios de las estaciones de repostaje, que potencialmente pueden albergar el hidrógeno como combustible alternativo, son los seguidores. El líder desea diseñar la política de subsidios que minimice la inversión necesaria para el despliegue efectivo de la infraestructura y los propietarios de las potenciales estaciones de repostaje, que pueden incluir al hidrógeno como combustible, deciden dinámicamente implementar o no (variables del nivel inferior) el hidrógeno con combustible alternativo, en función de las estimaciones del beneficio de su inversión basada en las actuales políticas de subsidios y en la demanda de combustibles alternativos. El modelo recoge el comportamiento de los diferentes actores del proceso (Estado Español, propietarios de estaciones de repostaje de combustible y propietarios de los vehículos eléctricos de pila de combustible) en un contexto dinámico y de competencia entre las estaciones de repostaje. El aspecto de competencia es novedoso en la literatura, ya que en la mayoría de los trabajos se asume una localización coordinada, esto es, un monopolio en la propiedad de las estaciones de repostaje de combustibles alternativos o, equivalentemente, la existencia de un Estado que puede forzar a cualquier propietario individual a instalar una estación de repostaje de combustible alternativo; siendo el objetivo el de maximizar el beneficio de la única compañía propietaria o maximizar la cobertura global de la red. El modelo o metodología, comentado anteriormente, se aplica a un caso de estudio formado por 5 nodos y 6 arcos. Con los resultados obtenidos, se realiza la proyección para el caso de España. Adicionalmente, se realiza un análisis de sensibilidad, incluyendo además de los subsidios base que considera la metodología (ayudas a la amortización de la infraestructura de repostaje y a los kilogramos de hidrógeno vendidos), un subsidio a la adquisición de vehículos eléctricos de pila de combustible alimentados por hidrógeno, y se considera dicho subsidio para el caso de estudio y su proyección al caso Español, sumando de esta forma un total de 4 escenarios. El periodo de estudio considerado es de 30 años, comprendido entre el año 2016 y el año 2045, siendo el estudio dinámico, es decir, los diferentes parámetros evolucionan con el tiempo, en concreto, para cada periodo de tiempo t, considerando que t es igual a un año. El principal resultado obtenido al aplicar la metodología planteada en la presente tesis doctoral a los cuatro escenarios, es la factibilidad técnico-económica de la introducción del hidrógeno como combustible alternativo (de forma ordenada y sostenible en el tiempo), necesitando para ello subsidios moderados, representando valores comprendidos entre el 0,18% y el 1,56% anual del presupuesto medio que el Gobierno Español dedica anualmente a infraestructuras. ABSTRACT Spanish mobility and transport have a strong dependence on imported oil. Oil supply and therefore mobility depend on politically unstable regions, raising concerns about security of supply.The impact of oil dependency in the Spanish economy is very important, being necessary to act to end this situation. The development of a strategy in the transport sector, replacing gradually to oil by alternative fuels and create the necessary infrastructure, could generate savings in the bill for oil imports, while greater security of supply and reduced greenhouse gases. We understand as alternative fuels, fuel or energy sources that replace, at least in part, to classic fossil fuels as a source of energy in transport and can contribute to the decarbonisation of the latter and to improve the environmental performance of the transport sector. Among the different alternative fuels, this thesis focuses on hydrogen. 2014/94 / EU OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL DIRECTIVE of 22 October 2014 on the implementation of an infrastructure for alternative fuels, establishes a common framework of measures for the implementation of an infrastructure for alternative fuels in the EU European to minimize the dependence of transport on oil and mitigate the environmental impact of transport. The Directive establishes minimum requirements for the creation of an infrastructure for alternative fuels, including charging points for electric vehicles and refuelling points natural gas (liquefied and compressed) and hydrogen, to be applied by the national policy frameworks Member States as well as by the common technical specifications on these charging points and refuelling, and reporting requirements to users. In this thesis, it provides answers to Directive 2014/94 / EU, in terms of developing a national action framework for hydrogen as an alternative fuel, by developing a methodology to determine the number of hydrogen refuelling stations and exact location, every time t, where t is equal to one year. Besides the subsidy policy is defined, optimizing the investment that the state has to perform, to make hydrogen as an alternative fuel is introduced, having to develop gradually, according to the needs and sustainable over time after the end of the subsidy period. To design the optimal policy subsidies, a model Stackelberg equilibrium is established, allowing penetration of hydrogen as an alternative fuel. The Spanish State plays the role of leader and owners of filling stations that can potentially accommodate hydrogen as an alternative fuel, are the followers. The leader wants to design the subsidy policy that minimizes the investment required for the effective deployment of the infrastructure and owners of potential refuelling stations, which may include hydrogen as fuel, dynamically decide to implement or not (variables lower level) the alternative fuel hydrogen, based on estimates of return on their investment based on current subsidy policies and the demand for alternative fuels. The model reflects the behaviour of the different actors in the process (Spanish state, station owners refuelling and owners of electric vehicles fuel cell) in a dynamic context and competition between refuelling stations. The aspect of competition is new in the literature, since in most works a coordinated location is assumed, that is, a monopoly on the ownership of refuelling stations for alternative fuels or, equivalently, the existence of a state you can force any individual owner to install a alternative fuel refuelling station, the aim being to maximize the benefit of the company or sole proprietor maximize overall network coverage. The model or methodology discussed above, is applied to a case study consists of five nodes and arcs 6 and a projection for all of Spain. In addition, a sensitivity analysis including addition to the initial considered subsidies (aid for amortization of refuelling infrastructure and kilograms of hydrogen sold), a subsidy for the purchase of fuel cell electric vehicles, considering the subsidy for the case study and performed projection to the entire Spanish territory, thereby adding a total of 4 scenarios. The study period considered is 30 years, between 2016 and 2045, being the dynamic study, ie, different parameters evolve over time, in particular, for each time t, whereas t is equal to one year. The main result of applying the methodology proposed in this thesis to the four scenarios, is the technical and economic feasibility of the introduction of hydrogen as an alternative fuel (in an orderly and sustainable manner over time), needing to do so subsidies moderate, representing values between 0.18% and 1.56% annual average budget of the Spanish government spends annually infrastructure

    Distintas formas de generación de hidrógeno

    No full text

    El hidrógeno: vector energético del futuro

    No full text

    Application of Green Hydrogen in Mobility Sector

    No full text
    At a global level, different studies disclose that transport systems are responsible for 25% of CO2 emissions. In the context of sustainable mobility, one of the challenges in the short term is associated with the research and improvement of alternative fuels, which should allow a fast decrease in the generation of greenhouse gases due to sustainable transport means. In this sense, green hydrogen can play a fundamental role. Green hydrogen is the basis for producing synthetic fuels, which can replace oil and its derivatives. Synthetic fuels or e-fuel are hydrocarbons produced from carbon dioxide (CO2) and green hydrogen (H2) as the only raw materials. H2 or efuel could be used in many sectors (manufacturing, residential, transportation, mining and other industries). In this study, different applications of hydrogen are evaluated by techno-economic analysis. The main variable that affects the production of hydrogen and its derivatives is the cost of electricity. Considering the renewable energy potential of Chile, it is feasible to develop in Chile the green hydrogen production as an energy vector, which would be technically and economically viable, together with the environmental benefit

    Das sozio-oekonomische Panel eine Kurzinformation

    No full text
    UuStB Koeln(38)-8206747 / FIZ - Fachinformationszzentrum Karlsruhe / TIB - Technische InformationsbibliothekSIGLEDEGerman

    Viability analysis for use of hydrogen as fuel in logistics centers

    Full text link
    The electricity cost in battery logistic center is cheaper (access to electricity grid with three period contract) that green hydrogen cost in hydrogen logistic center (hydrogen production plant, hydrogen transport and hydrogen refueling station in logistic center). The investment cost of hydrogen logistic center is cheaper (hydrogen forklift) than battery logistic center (battery forklift, second battery, battery charger and batteries area). The operation and maintenance cost for hydrogen logistic center is cheaper (hydrogen cost, stack replacement and fuel cell forklift maintenance) than battery logistic center (electricity cost, battery replacement, battery forklift maintenance, battery charger, battery area maintenance and additional employee). The key factor for hydrogen logistic centers is to need less employees for the same work

    Viability analysis for use of hydrogen as fuel in logistics centers

    No full text
    The electricity cost in battery logistic center is cheaper (access to electricity grid with three period contract) that green hydrogen cost in hydrogen logistic center (hydrogen production plant, hydrogen transport and hydrogen refueling station in logistic center). The investment cost of hydrogen logistic center is cheaper (hydrogen forklift) than battery logistic center (battery forklift, second battery, battery charger and batteries area). The operation and maintenance cost for hydrogen logistic center is cheaper (hydrogen cost, stack replacement and fuel cell forklift maintenance) than battery logistic center (electricity cost, battery replacement, battery forklift maintenance, battery charger, battery area maintenance and additional employee). The key factor for hydrogen logistic centers is to need less employees for the same work

    Nested logic model to determine the expansion of fuel cell electric vehicles in Spain. Sensitivity analysis of the key attributes

    No full text
    The use of Alternative Fuel Vehicles (AFV) as the Fuel Cell Vehicles (FCV)1, to replace vehicles powered by internal combustion engines, are a clear alternative of road transport that may provide, in the long term, security in energy supply at least partly, reduction in greenhouse gas emissions and improvement of air quality in cities. There are six areas, which should be addressed in order to guarantee market penetration of environmentally friendly cars: (a) purchase price, (b) running costs, (c) availability of refuelling stations, (d) vehicle range before refuelling, (e) refuelling time and, (f) CO2 emissions per kilometer2. Location models are intended to accelerate the market penetration of FCV, making efficient decisions about infrastructure design. Infrastructure (supply) enables to demand. However, in order for the infrastructure to be economically viable, there must already exist a given level of demand. In this work, we describe one part of the bi-level developed model, simulating the behaviour of H2 vehicle users. We use a discrete choice model to represent how users acquire FCV during the study period. The hierarchic nested logit model chosen for this study has been widely used in the field of transport. The process of choosing a FCV is the next. At the higher level a user chooses to purchase a conventional vehicle (alternative b) or an AFV (alternative a). At the lower level AFV users choose the type of alternative fuel. With the nested logit model it is possible to perform sensitivity analysis, which allows to observe how it affects each of the attributes in the usefulness of each type of vehicle and therefore the sale of the vehicle.El uso de vehículos de combustibles alternativos (AFV), como los vehículos de hidrógeno (pilas de combustible) (FCV), para reemplazar a los vehículos impulsados por motores de combustión interna, son una clara alternativa del transporte por carretera que puede proporcionar, a largo plazo, seguridad en el suministro de energía, reducción de las emisiones de gases de efecto invernadero y mejora de la calidad del aire en las ciudades. Para garantizar la penetración en el mercado de estos vehículos ecológicos, se deben abordar seis aspectos fundamentales: (a) precio de compra, (b) costes de funcionamiento, (c) disponibilidad de estaciones de repostaje, (d) autonomía de los vehículos, (e) tiempo de repostaje y (f) emisiones de CO2 por kilómetro. Con los modelos de localización se pretende acelerar la penetración de los FCV en el mercado, tomando decisiones eficientes sobre el diseño de la infraestructura. Una infraestructura adecuada (oferta) generará la demanda de estos vehículos. Sin embargo, para que la infraestructura sea económicamente viable debe de existir ya un nivel adecuado de demanda. En este trabajo, describimos una parte del modelo binivel que simula el comportamiento de los usuarios de los vehículos de H2. Utilizamos un modelo de elección discreta para representar cómo los usuarios adquieren los FCV durante el período en estudio. El modelo logit anidado jerárquico, elegido para este estudio, ha sido ampliamente utilizado en el campo del transporte. En el nivel superior del proceso de elegir un FCV, un usuario elige comprar un vehículo convencional (alternativa b) o un AFV (alternativa a). En el nivel inferior, los usuarios de AFV eligen el tipo de combustible alternativo. Con el modelo logit anidado, es posible realizar un análisis de sensibilidad que permita observar cómo afecta cada uno de los atributos a la utilidad de cada tipo de vehículo y, por tanto, a su venta.Sin financiación0.500 JCR (2017) Q4, 76/86 Engineering, MultidisciplinaryUE

    Green hydrogen integration in aluminum recycling: Techno-economic analysis towards sustainability transition in the expanding aluminum market

    Get PDF
    The use of aluminum-based products is widespread and growing, particularly in industries such as automotive, food packaging, and construction. Obtaining aluminum is expensive and energy-intensive, making the recycling of existing products essential for economic and environmental viability. This work explores the potential of using green hydrogen as a replacement for natural gas in the smelting and refining furnaces in aluminum recycling facilities. The adoption of green hydrogen has the potential to curtail approximately 4.54 ktons/year of CO2 emissions, rendering it a sustainable and economically advantageous solution. The work evaluates the economic viability of a case study through assessing the Net Present Value (NPV) and the Internal Rate of Return (IRR). Furthermore, it is employed single- and multi-parameter sensitivity analyses to obtain insight on the most relevant conditions to achieve economic viability. Results demonstrate that integrating on-site green hydrogen generation yields a favorable NPV of €57,370, an IRR of 9.83%, and a 19.63-year payback period. The primary factors influencing NPV are the initial electricity consumption stack and the H2 price
    corecore