126 research outputs found
Simulated Dark-Matter Halos as a Test of Nonextensive Statistical Mechanics
In the framework of nonextensive statistical mechanics, the equilibrium
structures of astrophysical self-gravitating systems are stellar polytropes,
parameterized by the polytropic index n. By careful comparison to the
structures of simulated dark-matter halos we find that the density profiles, as
well as other fundamental properties, of stellar polytropes are inconsistent
with simulations for any value of n. This result suggests the need to
reconsider the applicability of nonextensive statistical mechanics (in its
simplest form) to equilibrium self-gravitating systems.Comment: Accepted for publication in Physical Review
Upconversion channels in Er3+:ZBLALiP fluoride glass microspheres
We present results on the realization of a multicolour microspherical glass light source fabricated from the erbium doped fluoride glass ZBLALiP. Whispering gallery mode lasing and upconversion processes give rise to laser and fluorescent emissions at multiple wavelengths from the ultraviolet to the infrared. Thirteen discrete emissions ranging from 320 to 849 nm have been observed in the upconversion spectrum. A Judd-Ofelt analysis was performed to calculate the radiative properties of Er3+:ZBLALiP microspheres, including the radiative transition probabilities, the electric dipole strengths, the branching ratios and the radiative lifetimes of the transitions involved. We have also identified the primary processes responsible for the generation of the observed wavelengths and have shown that this material has an improved range of emissions over other erbium doped fluoride glasses
Implications for Fracture Healing of Current and New Osteoporosis Treatments: An ESCEO Consensus Paper
Osteoporotic fracture healing is critical to clinical outcome in terms of functional recovery, morbidity, and quality of life. Osteoporosis treatments may affect bone repair, so insights into their impact on fracture healing are important. We reviewed the current evidence for an impact of osteoporosis treatments on bone repair. Treatment with bisphosphonate in experimental models is associated with increased callus size and mineralization, reduced callus remodeling, and improved mechanical strength. Local and systemic bisphosphonate treatment may improve implant fixation. No negative impact on fracture healing has been observed, even after major surgery or when administered immediately after fracture. Experimental data for denosumab and raloxifene suggest no negative implications for bone repair. The extensive experimental results for teriparatide indicate increased callus formation, improved biomechanical strength, and greater external callus volume and total bone mineral content and density. Case reports and a randomized trial have produced mixed results but are consistent with a positive impact of teriparatide on clinical fracture healing. Studies with strontium ranelate in models of fracture healing indicate that it is associated with improved bone microstructure, callus volume, and biomechanical properties. Finally, there is experimental evidence for a beneficial effect of some of the agents currently being developed for osteoporosis, notably sclerostin antibody and DKK1 antibody. There is currently no evidence that osteoporosis treatments are detrimental for bone repair and some promising experimental evidence for positive effects on healing, notably for agents with a bone-forming mode of action, which may translate into therapeutic application
Disease-specific, neurosphere-derived cells as models for brain disorders
There is a pressing need for patient-derived cell models of brain diseases that are relevant and robust enough to produce the large quantities of cells required for molecular and functional analyses. We describe here a new cell model based on patient-derived cells from the human olfactory mucosa, the organ of smell, which regenerates throughout life from neural stem cells. Olfactory mucosa biopsies were obtained from healthy controls and patients with either schizophrenia, a neurodevelopmental psychiatric disorder, or Parkinson's disease, a neurodegenerative disease. Biopsies were dissociated and grown as neurospheres in defined medium. Neurosphere-derived cell lines were grown in serum-containing medium as adherent monolayers and stored frozen. By comparing 42 patient and control cell lines we demonstrated significant disease-specific alterations in gene expression, protein expression and cell function, including dysregulated neurodevelopmental pathways in schizophrenia and dysregulated mitochondrial function, oxidative stress and xenobiotic metabolism in Parkinson's disease. The study has identified new candidate genes and cell pathways for future investigation. Fibroblasts from schizophrenia patients did not show these differences. Olfactory neurosphere-derived cells have many advantages over embryonic stem cells and induced pluripotent stem cells as models for brain diseases. They do not require genetic reprogramming and they can be obtained from adults with complex genetic diseases. They will be useful for understanding disease aetiology, for diagnostics and for drug discovery
Flat galaxies with dark matter halos - existence and stability
We consider a model for a flat, disk-like galaxy surrounded by a halo of dark
matter, namely a Vlasov-Poisson type system with two particle species, the
stars which are restricted to the galactic plane and the dark matter particles.
These constituents interact only through the gravitational potential which
stars and dark matter create collectively. Using a variational approach we
prove the existence of steady state solutions and their nonlinear stability
under suitably restricted perturbations.Comment: 39 page
Disentangling Baryons and Dark Matter in the Spiral Gravitational Lens B1933+503
Measuring the relative mass contributions of luminous and dark matter in
spiral galaxies is important for understanding their formation and evolution.
The combination of a galaxy rotation curve and strong lensing is a powerful way
to break the disk-halo degeneracy that is inherent in each of the methods
individually. We present an analysis of the 10-image radio spiral lens
B1933+503 at z_l=0.755, incorporating (1) new global VLBI observations, (2) new
adaptive-optics assisted K-band imaging, (3) new spectroscopic observations for
the lens galaxy rotation curve and the source redshift. We construct a
three-dimensionally axisymmetric mass distribution with 3 components: an
exponential profile for the disk, a point mass for the bulge, and an NFW
profile for the halo. The mass model is simultaneously fitted to the kinematics
and the lensing data. The NFW halo needs to be oblate with a flattening of
a/c=0.33^{+0.07}_{-0.05} to be consistent with the radio data. This suggests
that baryons are effective at making the halos oblate near the center. The
lensing and kinematics analysis probe the inner ~10 kpc of the galaxy, and we
obtain a lower limit on the halo scale radius of 16 kpc (95% CI). The dark
matter mass fraction inside a sphere with a radius of 2.2 disk scale lengths is
f_{DM,2.2}=0.43^{+0.10}_{-0.09}. The contribution of the disk to the total
circular velocity at 2.2 disk scale lengths is 0.76^{+0.05}_{-0.06}, suggesting
that the disk is marginally submaximal. The stellar mass of the disk from our
modeling is log_{10}(M_{*}/M_{sun}) = 11.06^{+0.09}_{-0.11} assuming that the
cold gas contributes ~20% to the total disk mass. In comparison to the stellar
masses estimated from stellar population synthesis models, the stellar initial
mass function of Chabrier is preferred to that of Salpeter by a probability
factor of 7.2.Comment: 16 pages, 13 figures, minor revisions based on referee's comments,
accepted for publication in Ap
Ergodicity and Central Limit Theorem in Systems with Long-Range Interactions
In this letter we discuss the validity of the ergodicity hypothesis in
theories of violent relaxation in long-range interacting systems. We base our
reasoning on the Hamiltonian Mean Field model and show that the life-time of
quasi-stationary states resulting from the violent relaxation does not allow
the system to reach a complete mixed state. We also discuss the applicability
of a generalization of the central limit theorem. In this context, we show that
no attractor exists in distribution space for the sum of velocities of a
particle other than the Gaussian distribution. The long-range nature of the
interaction leads in fact to a new instance of sluggish convergence to a
Gaussian distribution.Comment: 13 pages,6 figure
OC6 Phase I: Investigating the underprediction of low-frequency hydrodynamic loads and responses of a floating wind turbine
Phase I of the OC6 project is focused on examining why offshore wind design tools underpredict the response (loads/motion) of the OC5-DeepCwind semisubmersible at its surge and pitch natural frequencies. Previous investigations showed that the underprediction was primarily related to nonlinear hydrodynamic loading, so two new validation campaigns were performed to separately examine the different hydrodynamic load components. In this paper, we validate a variety of tools against this new test data, focusing on the ability to accurately model the low-frequency loads on a semisubmersible floater when held fixed under wave excitation and when forced to oscillate in the surge direction. However, it is observed that models providing better load predictions in these two scenarios do not necessarily produce a more accurate motion response in a moored configuration.The authors would like to acknowledge the support of the MARINET2 project (European Union’s Horizon 2020 grant agreement 731084), which supplied the tank test time and travel support to accomplish the testing campaign. The support of MARIN in the preparation, execution of the modeltests, and the evaluation of the uncertainties was essential for this study. MARIN’s contribution was partly funded by the Dutch Ministry of Economic Affairs through TKI-ARD funding programs. This work was authored in part by the National Renewable Energy Laboratory, operated by Alliance for Sustainable Energy, LLC, for the U.S. Department of Energy (DOE) under Contract No. DE-AC36- 08GO28308. Funding provided by the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Wind Energy Technologies Office. The views expressed in the article do not necessarily represent the views of the DOE or the U.S. Government. The U.S. Government retains and the publisher, by accepting the article for publication, acknowledges that the U.S. Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for U.S. Government purposes
- …