146 research outputs found
Magnetoresistence engineering and singlet/triplet switching in InAs nanowire quantum dots with ferromagnetic sidegates
We present magnetoresistance (MR) experiments on an InAs nanowire quantum dot
device with two ferromagnetic sidegates (FSGs) in a split-gate geometry. The
wire segment can be electrically tuned to a single dot or to a double dot
regime using the FSGs and a backgate. In both regimes we find a strong MR and a
sharp MR switching of up to 25\% at the field at which the magnetizations of
the FSGs are inverted by the external field. The sign and amplitude of the MR
and the MR switching can both be tuned electrically by the FSGs. In a double
dot regime close to pinch-off we find {\it two} sharp transitions in the
conductance, reminiscent of tunneling MR (TMR) between two ferromagnetic
contacts, with one transition near zero and one at the FSG switching fields.
These surprisingly rich characteristics we explain in several simple resonant
tunneling models. For example, the TMR-like MR can be understood as a
stray-field controlled transition between singlet and a triplet double dot
states. Such local magnetic fields are the key elements in various proposals to
engineer novel states of matter and may be used for testing electron spin-based
Bell inequalities.Comment: 7 pages, 6 figure
Processing second-order stochastic dominance models using cutting-plane representations
This is the post-print version of the Article. The official published version can be accessed from the links below. Copyright @ 2011 Springer-VerlagSecond-order stochastic dominance (SSD) is widely recognised as an important decision criterion in portfolio selection. Unfortunately, stochastic dominance models are known to be very demanding from a computational point of view. In this paper we consider two classes of models which use SSD as a choice criterion. The first, proposed by Dentcheva and Ruszczyński (J Bank Finance 30:433–451, 2006), uses a SSD constraint, which can be expressed as integrated chance constraints (ICCs). The second, proposed by Roman et al. (Math Program, Ser B 108:541–569, 2006) uses SSD through a multi-objective formulation with CVaR objectives. Cutting plane representations and algorithms were proposed by Klein Haneveld and Van der Vlerk (Comput Manage Sci 3:245–269, 2006) for ICCs, and by Künzi-Bay and Mayer (Comput Manage Sci 3:3–27, 2006) for CVaR minimization. These concepts are taken into consideration to propose representations and solution methods for the above class of SSD based models. We describe a cutting plane based solution algorithm and outline implementation details. A computational study is presented, which demonstrates the effectiveness and the scale-up properties of the solution algorithm, as applied to the SSD model of Roman et al. (Math Program, Ser B 108:541–569, 2006).This study was funded by OTKA, Hungarian
National Fund for Scientific Research, project 47340; by Mobile Innovation Centre, Budapest University of Technology, project 2.2; Optirisk Systems, Uxbridge, UK and by BRIEF (Brunel University Research Innovation and Enterprise Fund)
Portfolio selection problems in practice: a comparison between linear and quadratic optimization models
Several portfolio selection models take into account practical limitations on
the number of assets to include and on their weights in the portfolio. We
present here a study of the Limited Asset Markowitz (LAM), of the Limited Asset
Mean Absolute Deviation (LAMAD) and of the Limited Asset Conditional
Value-at-Risk (LACVaR) models, where the assets are limited with the
introduction of quantity and cardinality constraints. We propose a completely
new approach for solving the LAM model, based on reformulation as a Standard
Quadratic Program and on some recent theoretical results. With this approach we
obtain optimal solutions both for some well-known financial data sets used by
several other authors, and for some unsolved large size portfolio problems. We
also test our method on five new data sets involving real-world capital market
indices from major stock markets. Our computational experience shows that,
rather unexpectedly, it is easier to solve the quadratic LAM model with our
algorithm, than to solve the linear LACVaR and LAMAD models with CPLEX, one of
the best commercial codes for mixed integer linear programming (MILP) problems.
Finally, on the new data sets we have also compared, using out-of-sample
analysis, the performance of the portfolios obtained by the Limited Asset
models with the performance provided by the unconstrained models and with that
of the official capital market indices
Prolyl hydroxylase-1 regulates hepatocyte apoptosis in an NF-kB-dependent manner
Hepatocyte death is an important contributing factor in a number of diseases of the liver. PHD1 confers hypoxic sensitivity upon transcription factors including the hypoxia inducible factor (HIF) and nuclear factor-kappaB (NF-κB). Reduced PHD1 activity is linked to decreased apoptosis. Here, we investigated the underlying mechanism(s) in hepatocytes. Basal NF-κB activity was elevated in PHD1(-/-) hepatocytes compared to wild type controls. ChIP-seq analysis confirmed enhanced binding of NF-κB to chromatin in regions proximal to the promoters of genes involved in the regulation of apoptosis. Inhibition of NF-κB (but not knock-out of HIF-1 or HIF-2) reversed the anti-apoptotic effects of pharmacologic hydroxylase inhibition. We hypothesize that PHD1 inhibition leads to altered expression of NF-κB-dependent genes resulting in reduced apoptosis. This study provides new information relating to the possible mechanism of therapeutic action of hydroxylase inhibitors that has been reported in pre-clinical models of intestinal and hepatic disease.status: publishe
Properties of the Liquid-Vapor Interface of Acetone-Water Mixtures. A Computer Simulation and ITIM Analysis Study
Molecular dynamics simulations of the liquid-vapor interface of acetone-water mixtures of different compositions, covering the entire composition range have been performed on the canonical (N, V, T) ensemble at 298 K, using a model combination that excellently describes the mixing properties of these compounds. The properties of the intrinsic liquid surfaces have been analyzed in terms of the Identification of the Truly Interfacial Molecules (ITIM) method. Thus, the composition, width, roughness, and separation of the subsurface molecular layers, as well as self-association, orientation, and dynamics of exchange with the bulk phase of the surface molecules have been analyzed in detail. Our results show that acetone molecules are strongly adsorbed at the liquid surface, and this adsorption extends to several molecular layers. Like molecules in the surface layer are found to form relatively large lateral self-associates. The effect of the vicinity of the vapor phase on a number of properties of the liquid phase vanishes beyond the first molecular layer, with the second subsurface layer already part of the bulk liquid phase in these respects. The orientational preferences of the surface molecules are governed primarily by the dipole-dipole interaction of the neighboring acetone molecules, and hydrogen bonding interaction of the neighboring acetone-water pairs. (Figure Presented). © 2015 American Chemical Society
A randomised clinical study to determine the effect of a toothpaste containing enzymes and proteins on plaque oral microbiome ecology
The numerous species that make up the oral microbiome are now understood to play a key role in establishment and maintenance of oral health. The ability to taxonomically identify community members at the species level is important to elucidating its diversity and association to health and disease. We report the overall ecological effects of using a toothpaste containing enzymes and proteins compared to a control toothpaste on the plaque microbiome. The results reported here demonstrate that a toothpaste containing enzymes and proteins can augment natural salivary defences to promote an overall community shift resulting in an increase in bacteria associated with gum health and a concomitant decrease in those associated with periodontal disease. Statistical analysis shows significant increases in 12 taxa associated with gum health including Neisseria spp. and a significant decrease in 10 taxa associated with periodontal disease including Treponema spp. The results demonstrate that a toothpaste containing enzymes and proteins can significantly shift the ecology of the oral microbiome (at species level) resulting in a community with a stronger association to health
Floating Patches of HCN at the Surface of Their Aqueous Solutions - Can They Make "HCN World" Plausible?
The liquid/vapor interface of the aqueous solutions of HCN of different concentrations has been investigated using molecular dynamics simulation and intrinsic surface analysis. Although HCN is fully miscible with water, strong interfacial adsorption of HCN is observed at the surface of its aqueous solutions, and, at the liquid surface, the HCN molecules tend to be located even at the outer edge of the surface layer. It turns out that in dilute systems the HCN concentration can be about an order of magnitude larger in the surface layer than in the bulk liquid phase. Furthermore, HCN molecules show a strong lateral self-association behavior at the liquid surface, forming thus floating HCN patches at the surface of their aqueous solutions. Moreover, HCN molecules are staying, on average, an order of magnitude longer at the liquid surface than water molecules, and this behavior is more pronounced at smaller HCN concentrations. Because of this enhanced dynamical stability, the floating HCN patches can provide excellent spots for polymerization of HCN, which can be the key step in the prebiotic synthesis of partially water-soluble adenine. All of these findings make the hypothesis of "HCN world" more plausible
- …