687 research outputs found

    Magnetism of two-dimensional defects in Pd: stacking faults, twin boundaries and surfaces

    Full text link
    Careful first-principles density functional calculations reveal the importance of hexagonal versus cubic stacking of closed packed planes of Pd as far as local magnetic properties are concerned. We find that, contrary to the stable face centered cubic phase, which is paramagnetic, the hexagonal close-packed phase of Pd is ferromagnetic with a magnetic moment of 0.35 μB\mu_{B}/atom. Our results show that two-dimensional defects with local hcp stacking, like twin boundaries and stacking faults, in the otherwise fcc Pd structure, increase the magnetic susceptibility. The (111) surface also increases the magnetic susceptibility and it becomes ferromagnetic in combination with an individual stacking fault or twin boundary close to it. On the contrary, we find that the (100) surface decreases the tendency to ferromagnetism. The results are consistent with the magnetic moment recently observed in small Pd nanoparticles, with a large surface area and a high concentration of two-dimensional stacking defects.Comment: 8 pages, 10 figure

    (Contravariant) Koszul duality for DG algebras

    Full text link
    A DG algebras AA over a field kk with H(A)H(A) connected and H<0(A)=0H_{<0}(A)=0 has a unique up to isomorphism DG module KK with H(K)≅kH(K)\cong k. It is proved that if H(A)H(A) is degreewise finite, then RHom_A(?,K): D^{df}_{+}(A)^{op} \equiv D_{df}^{+}}(RHom_A(K,K)) is an exact equivalence of derived categories of DG modules with degreewise finite-dimensional homology. It induces an equivalences of Dbdf(A)opD^{df}_{b}(A)^{op} and the category of perfect DG RHomA(K,K)RHom_A(K,K)-modules, and vice-versa. Corresponding statements are proved also when H(A)H(A) is simply connected and H<0(A)=0H^{<0}(A)=0.Comment: 33 page

    The de Rham homotopy theory and differential graded category

    Full text link
    This paper is a generalization of arXiv:0810.0808. We develop the de Rham homotopy theory of not necessarily nilpotent spaces, using closed dg-categories and equivariant dg-algebras. We see these two algebraic objects correspond in a certain way. We prove an equivalence between the homotopy category of schematic homotopy types and a homotopy category of closed dg-categories. We give a description of homotopy invariants of spaces in terms of minimal models. The minimal model in this context behaves much like the Sullivan's minimal model. We also provide some examples. We prove an equivalence between fiberwise rationalizations and closed dg-categories with subsidiary data.Comment: 47 pages. final version. The final publication is available at http://www.springerlink.co

    Around the tangent cone theorem

    Full text link
    A cornerstone of the theory of cohomology jump loci is the Tangent Cone theorem, which relates the behavior around the origin of the characteristic and resonance varieties of a space. We revisit this theorem, in both the algebraic setting provided by cdga models, and in the topological setting provided by fundamental groups and cohomology rings. The general theory is illustrated with several classes of examples from geometry and topology: smooth quasi-projective varieties, complex hyperplane arrangements and their Milnor fibers, configuration spaces, and elliptic arrangements.Comment: 39 pages; to appear in the proceedings of the Configurations Spaces Conference (Cortona 2014), Springer INdAM serie

    Fully relativistic calculation of magnetic properties of Fe, Co and Ni adclusters on Ag(100)

    Full text link
    We present first principles calculations of the magnetic moments and magnetic anisotropy energies of small Fe, Co and Ni clusters on top of a Ag(100) surface as well as the exchange-coupling energy between two single adatoms of Fe or Co on Ag(100). The calculations are performed fully relativistically using the embedding technique within the Korringa-Kohn-Rostoker method. The magnetic anisotropy and the exchange-coupling energies are calculated by means of the force theorem. In the case of adatoms and dimers of iron and cobalt we obtain enhanced spin moments and, especially, unusually large orbital moments, while for nickel our calculations predict a complete absence of magnetism. For larger clusters, the magnitudes of the local moments of the atoms in the center of the cluster are very close to those calculated for the corresponding monolayers. Similar to the orbital moments, the contributions of the individual atoms to the magnetic anisotropy energy strongly depend on the position, hence, on the local environment of a particular atom within a given cluster. We find strong ferromagnetic coupling between two neighboring Fe or Co atoms and a rapid, oscillatory decay of the exchange-coupling energy with increasing distance between these two adatoms.Comment: 8 pages, ReVTeX + 4 figures (Encapsulated Postscript), submitted to PR

    Polarization of Lambda^0 hyperons in nucleus-nucleus collisions at high energies

    Full text link
    The measurement of Lambda^0 hyperons polarization in nucleus-nucleus collisions is considered as one of possible tools to study the phase transition. Fixed target and collider experiments are discussed for the case of Lambda^0's production from Au-Au central collisions at \sqrt{s_{NN}} of several GeV.Comment: 15 pages, 6 figure

    Chemical interaction at the buried silicon/zinc oxide thin-film solar cell interface as revealed by hard x-ray photoelectron spectroscopy

    Get PDF
    Hard X-ray photoelectron spectroscopy (HAXPES) is used to identify chemical interactions (such as elemental redistribution) at the buried silicon /aluminum-doped zinc oxide thin-film solar cell interface. Expanding our study of the interfacial oxidation of silicon upon its solid-phase crystallization (SPC), in which we found zinc oxide to be the source of oxygen, in this investigation we address chemical interaction processes involving zinc and aluminum. In particular, we observe an increase of zinc- and aluminum-related HAXPES signals after SPC of the deposited amorphous silicon thin films. Quantitative analysis suggests an elemental redistribution in the proximity of the silicon/aluminum-doped zinc oxide interface – more pronounced for aluminum than for zinc – as explanation. Based on these insights the complex chemical interface structure is discussed

    Heralded quantum entanglement between two crystals

    Full text link
    Quantum networks require the crucial ability to entangle quantum nodes. A prominent example is the quantum repeater which allows overcoming the distance barrier of direct transmission of single photons, provided remote quantum memories can be entangled in a heralded fashion. Here we report the observation of heralded entanglement between two ensembles of rare-earth-ions doped into separate crystals. A heralded single photon is sent through a 50/50 beamsplitter, creating a single-photon entangled state delocalized between two spatial modes. The quantum state of each mode is subsequently mapped onto a crystal, leading to an entangled state consisting of a single collective excitation delocalized between two crystals. This entanglement is revealed by mapping it back to optical modes and by estimating the concurrence of the retrieved light state. Our results highlight the potential of rare-earth-ions doped crystals for entangled quantum nodes and bring quantum networks based on solid-state resources one step closer.Comment: 10 pages, 5 figure

    Evolution of Susceptibility to Ingested Double-Stranded RNAs in Caenorhabditis Nematodes

    Get PDF
    International audienceBACKGROUND: The nematode Caenorhabditis elegans is able to take up external double-stranded RNAs (dsRNAs) and mount an RNA interference response, leading to the inactivation of specific gene expression. The uptake of ingested dsRNAs into intestinal cells has been shown to require the SID-2 transmembrane protein in C. elegans. By contrast, C. briggsae was shown to be naturally insensitive to ingested dsRNAs, yet could be rendered sensitive by transgenesis with the C. elegans sid-2 gene. Here we aimed to elucidate the evolution of the susceptibility to external RNAi in the Caenorhabditis genus. PRINCIPAL FINDINGS: We study the sensitivity of many new species of Caenorhabditis to ingested dsRNAs matching a conserved actin gene sequence from the nematode Oscheius tipulae. We find ample variation in the Caenorhabditis genus in the ability to mount an RNAi response. We map this sensitivity onto a phylogenetic tree, and show that sensitivity or insensitivity have evolved convergently several times. We uncover several evolutionary losses in sensitivity, which may have occurred through distinct mechanisms. We could render C. remanei and C. briggsae sensitive to ingested dsRNAs by transgenesis of the Cel-sid-2 gene. We thus provide tools for RNA interference studies in these species. We also show that transgenesis by injection is possible in many Caenorhabditis species. CONCLUSIONS: The ability of animals to take up dsRNAs or to respond to them by gene inactivation is under rapid evolution in the Caenorhabditis genus. This study provides a framework and tools to use RNA interference and transgenesis in various Caenorhabditis species for further comparative and evolutionary studies
    • …
    corecore