This paper is a generalization of arXiv:0810.0808. We develop the de Rham
homotopy theory of not necessarily nilpotent spaces, using closed dg-categories
and equivariant dg-algebras. We see these two algebraic objects correspond in a
certain way. We prove an equivalence between the homotopy category of schematic
homotopy types and a homotopy category of closed dg-categories. We give a
description of homotopy invariants of spaces in terms of minimal models. The
minimal model in this context behaves much like the Sullivan's minimal model.
We also provide some examples. We prove an equivalence between fiberwise
rationalizations and closed dg-categories with subsidiary data.Comment: 47 pages. final version. The final publication is available at
http://www.springerlink.co