367,784 research outputs found

    Quantum renormalization of high energy excitations in the 2D Heisenberg antiferromagnet

    Full text link
    We find using Monte Carlo simulations of the spin-1/2 2D square lattice nearest neighbour quantum Heisenberg antiferromagnet that the high energy peak locations at (pi,0) and (pi/2,pi/2) differ by about 6%, (pi/2,pi/2) being the highest. This is a deviation from linear spin wave theory which predicts equal magnon energies at these points.Comment: Final version, Latex using iopart & epsfi

    A summary of the behavior of materials at cryogenic temperatures

    Get PDF
    Summary of material behavior at cryogenic temperature

    The Peierls--Nabarro FE model in two-phase microstructures -- a comparison with atomistics

    Full text link
    This paper evaluates qualitatively as well as quantitatively the accuracy of a recently proposed Peierls--Nabarro Finite Element (PN-FE) model for dislocations by a direct comparison with an equivalent molecular statics simulation. To this end, a two-dimensional microstructural specimen subjected to simple shear is considered, consisting of a central soft phase flanked by two hard-phase regions. A hexagonal atomic structure with equal lattice spacing is adopted, the interactions of which are described by the Lennard--Jones potential with phase specific depths of its energy well. During loading, edge dislocation dipoles centred in the soft phase are introduced, which progress towards the phase boundaries, where they pile up. Under a sufficiently high external shear load, the leading dislocation is eventually transmitted into the harder phase. The homogenized PN-FE model is calibrated to an atomistic model in terms of effective elasticity constants and glide plane properties as obtained from simple uniform deformations. To study the influence of different formulations of the glide plane potential, multiple approaches are employed, ranging from a simple sinusoidal function of the tangential disregistry to a complex model that couples the influence of the tangential and the normal disregistries. The obtained results show that, qualitatively, the dislocation structure, displacement, strain fields, and the dislocation evolution are captured adequately. The simplifications of the PN-FE model lead, however, to some discrepancies within the dislocation core. Such discrepancies play a dominant role in the dislocation transmission process, which thus cannot quantitatively be captured properly. Despite its simplicity, the PN-FE model proves to be an elegant tool for a qualitative study of edge dislocation behaviour in two-phase microstructures, although it may not be quantitatively predictive.Comment: 29 pages, 11 figures, 5 tables, abstract shortened to fulfill 1920 character limit, small changes after revie

    Development of Muon Drift-Tube Detectors for High-Luminosity Upgrades of the Large Hadron Collider

    Full text link
    The muon detectors of the experiments at the Large Hadron Collider (LHC) have to cope with unprecedentedly high neutron and gamma ray background rates. In the forward regions of the muon spectrometer of the ATLAS detector, for instance, counting rates of 1.7 kHz/square cm are reached at the LHC design luminosity. For high-luminosity upgrades of the LHC, up to 10 times higher background rates are expected which require replacement of the muon chambers in the critical detector regions. Tests at the CERN Gamma Irradiation Facility showed that drift-tube detectors with 15 mm diameter aluminum tubes operated with Ar:CO2 (93:7) gas at 3 bar and a maximum drift time of about 200 ns provide efficient and high-resolution muon tracking up to the highest expected rates. For 15 mm tube diameter, space charge effects deteriorating the spatial resolution at high rates are strongly suppressed. The sense wires have to be positioned in the chamber with an accuracy of better than 50 ?micons in order to achieve the desired spatial resolution of a chamber of 50 ?microns up to the highest rates. We report about the design, construction and test of prototype detectors which fulfill these requirements

    Relationship between clustering and algorithmic phase transitions in the random k-XORSAT model and its NP-complete extensions

    Full text link
    We study the performances of stochastic heuristic search algorithms on Uniquely Extendible Constraint Satisfaction Problems with random inputs. We show that, for any heuristic preserving the Poissonian nature of the underlying instance, the (heuristic-dependent) largest ratio αa\alpha_a of constraints per variables for which a search algorithm is likely to find solutions is smaller than the critical ratio αd\alpha_d above which solutions are clustered and highly correlated. In addition we show that the clustering ratio can be reached when the number k of variables per constraints goes to infinity by the so-called Generalized Unit Clause heuristic.Comment: 15 pages, 4 figures, Proceedings of the International Workshop on Statistical-Mechanical Informatics, September 16-19, 2007, Kyoto, Japan; some imprecisions in the previous version have been correcte

    Advanced multilateration theory, software development, and data processing: The MICRODOT system

    Get PDF
    The process of geometric parameter estimation to accuracies of one centimeter, i.e., multilateration, is defined and applications are listed. A brief functional explanation of the theory is presented. Next, various multilateration systems are described in order of increasing system complexity. Expected systems accuracy is discussed from a general point of view and a summary of the errors is listed. An outline of the design of a software processing system for multilateration, called MICRODOT, is presented next. The links of this software, which can be used for multilateration data simulations or operational data reduction, are examined on an individual basis. Functional flow diagrams are presented to aid in understanding the software capability. MICRODOT capability is described with respect to vehicle configurations, interstation coordinate reduction, geophysical parameter estimation, and orbit determination. Numerical results obtained from MICRODOT via data simulations are displayed both for hypothetical and real world vehicle/station configurations such as used in the GEOS-3 Project. These simulations show the inherent power of the multilateration procedure

    Frustrated spin-12\frac{1}{2} Heisenberg magnet on a square-lattice bilayer: High-order study of the quantum critical behavior of the J1J_{1}--J2J_{2}--J1⊥J_{1}^{\perp} model

    Full text link
    The zero-temperature phase diagram of the spin-12\frac{1}{2} J1J_{1}--J2J_{2}--J1⊥J_{1}^{\perp} model on an AAAA-stacked square-lattice bilayer is studied using the coupled cluster method implemented to very high orders. Both nearest-neighbor (NN) and frustrating next-nearest-neighbor Heisenberg exchange interactions, of strengths J1>0J_{1}>0 and J2≡κJ1>0J_{2} \equiv \kappa J_{1}>0, respectively, are included in each layer. The two layers are coupled via a NN interlayer Heisenberg exchange interaction with a strength J1⊥≡δJ1J_{1}^{\perp} \equiv \delta J_{1}. The magnetic order parameter MM (viz., the sublattice magnetization) is calculated directly in the thermodynamic (infinite-lattice) limit for the two cases when both layers have antiferromagnetic ordering of either the N\'{e}el or the striped kind, and with the layers coupled so that NN spins between them are either parallel (when δ0\delta 0) to one another. Calculations are performed at nnth order in a well-defined sequence of approximations, which exactly preserve both the Goldstone linked cluster theorem and the Hellmann-Feynman theorem, with n≤10n \leq 10. The sole approximation made is to extrapolate such sequences of nnth-order results for MM to the exact limit, n→∞n \to \infty. By thus locating the points where MM vanishes, we calculate the full phase boundaries of the two collinear AFM phases in the κ\kappa--δ\delta half-plane with κ>0\kappa > 0. In particular, we provide the accurate estimate, (κ≈0.547,δ≈−0.45\kappa \approx 0.547,\delta \approx -0.45), for the position of the quantum triple point (QTP) in the region δ<0\delta < 0. We also show that there is no counterpart of such a QTP in the region δ>0\delta > 0, where the two quasiclassical phase boundaries show instead an ``avoided crossing'' behavior, such that the entire region that contains the nonclassical paramagnetic phases is singly connected

    Geoneutrinos in Borexino

    Full text link
    This paper describes the Borexino detector and the high-radiopurity studies and tests that are integral part of the Borexino technology and development. The application of Borexino to the detection and studies of geoneutrinos is discussed.Comment: Conference: Neutrino Geophysics Honolulu, Hawaii December 14-16, 200

    Universal decay law in charged-particle emission and exotic cluster radioactivity

    Full text link
    A linear universal decay formula is presented starting from the microscopic mechanism of the charged-particle emission. It relates the half-lives of monopole radioactive decays with the QQ-values of the outgoing particles as well as the masses and charges of the nuclei involved in the decay. This relation is found to be a generalization of the Geiger-Nuttall law in α\alpha radioactivity and explains well all known cluster decays. Predictions on the most likely emissions of various clusters are presented.Comment: 2 figure
    • …
    corecore