research

Relationship between clustering and algorithmic phase transitions in the random k-XORSAT model and its NP-complete extensions

Abstract

We study the performances of stochastic heuristic search algorithms on Uniquely Extendible Constraint Satisfaction Problems with random inputs. We show that, for any heuristic preserving the Poissonian nature of the underlying instance, the (heuristic-dependent) largest ratio αa\alpha_a of constraints per variables for which a search algorithm is likely to find solutions is smaller than the critical ratio αd\alpha_d above which solutions are clustered and highly correlated. In addition we show that the clustering ratio can be reached when the number k of variables per constraints goes to infinity by the so-called Generalized Unit Clause heuristic.Comment: 15 pages, 4 figures, Proceedings of the International Workshop on Statistical-Mechanical Informatics, September 16-19, 2007, Kyoto, Japan; some imprecisions in the previous version have been correcte

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 12/11/2016
    Last time updated on 11/12/2019