50 research outputs found

    Pulmonary intravascular macrophages: Prime suspects as cellular mediators of porcine CARPA

    Get PDF
    Pigs provide a highly sensitive and quantitative in vivo model for complement (C) activation-related pseudoallergy (CARPA), a hypersensitivity reaction caused by some state-of-art nanomedicines. In an effort to understand the mechanism of the pigs' unique sensitivity for CARPA, this review focuses on pulmonary intravascular macrophages (PIMs), which are abundantly present in the lung of pigs. These cells represent a macrophage subpopulation whose unique qualities explain the characteristic symptoms of CARPA in this species, most importantly the rapidly (within minutes) developing pulmonary vasoconstriction, leading to elevation of pulmonary arterial pressure. The unique qualities of PIM cells include the following; 1) they are strongly adhered to the capillary walls via desmosome-like intercellular adhesion plaques, which secure stable and lasting direct exposition of the bulk of these cells to the blood stream; 2) their ruffled surface engaged in intense phagocytic activity ensures efficient binding and phagocytosis of nanoparticles; 3) PIM cells express anaphylatoxin receptors, this way C activation can trigger these cells, 4) they also express pattern recognition molecules on their surface, whose engagement with certain coated nanoparticles may also activate these cells or act in synergy with anaphylatoxins and, finally 5) their high metabolic activity and capability for immediate secretion of vasoactive mediators upon stimulation explain the circulatory blockage and other robust physiological effects that their stimulation may cause. These qualities taken together with reports on liposome uptake by PIM cells during CARPA and the possible presence of these cells in human lung suggests that PIM cells may be a potential therapeutic target against CARPA. © 2015 by De Gruyter

    Use of anticoagulants and antiplatelet agents in stable outpatients with coronary artery disease and atrial fibrillation. International CLARIFY registry

    Get PDF

    Vitamin D and its role in psoriasis: An overview of the dermatologist and nutritionist

    Get PDF

    Analysis by SAXS and cryo-TEM on polymerization with a surfactant

    No full text

    Dielectric relaxation of poly (trimethylene terephthalate) in a broad range of crystallinity

    No full text
    Here we present dielectric relaxation experiments carried out in semicrystalline poly (trimethylene terephthalate) (PTT) samples covering a broad range of crystallinity values. Special attention has been devoted to characterize the two extremes of low and high crystallinity. In particular a high temperature relaxation in the dielectric spectra of highly crystalline PTT, attributed to a Maxwell-Wagner-Sillars process, has been revealed. Moreover, the existence of ordering phenomena during the induction period prior to crystallization has been characterized by dielectric spectroscopy. © 2013 Elsevier Ltd. All rights reserved

    Nanostructuring thin polymer films with optical near fields.

    No full text
    In the present work, we report on the application of optical near fields to nanostructuring of poly(trimethylene terephthalate) (PTT) thin films. By exposure to a single ultraviolet nanosecond laser pulse, the spatial intensity modulation of the near-field distribution created by a silica microsphere is imprinted into the films. Setting different angles of incidence of the laser, elliptical or circular periodic ring patterns can be produced with periods as small as half the laser wavelength used. These highly complex patterns show optical and topographical contrast and can be characterized by optical microscopy (OM) and atomic force microscopy (AFM). We demonstrate the key role of the laser wavelength and coherence length in achieving smooth, extended patterns in PTT by using excimer laser (193 nm) and Nd:YAG laser (266 nm) pulses. Reference experiments performed in Ge2Sb2Te5 (GST) demonstrate that nanopatterning in PTT is triggered by ablation as opposed to GST, in which nanopatterning originates from laser-induced phase change, accompanied by a small topographical contrast. The experiments presented in this work demonstrate the suitability of optical near fields for structuring polymer films, opening up new possibilities for nanopatterning and paving the way for potential applications where optical near fields and polymer nanostructures are involved

    Relaxation dynamics and cold crystallization of poly(pentamethylene terephthalate) as revealed by dielectric spectroscopy

    No full text
    The relaxation dynamics of poly(pentamethylene terephthalate) has been investigated by means of dielectric spectroscopy. The sub-glass dynamics is characterized by the existence of a bimodal β process whose faster and slower components have been assigned to the relaxation of the bond between the ester oxygen and the aliphatic carbon and to the link between the aromatic ring carbon and the ester carbon, respectively. By comparison with other closely related aromatic polyesters it is shown that the faster component strongly depends on the amount of methylene groups while the slower one is not considerably affected by the nature of the glycol subunit. The changes in the α process associated to the segmental relaxation during cold crystallization reveal the formation of a rigid amorphous phase fraction. Combination of dielectric experiments with X-ray scattering ones suggests that during cold crystallization PPT crystal lamellae tend to fill the space homogeneously. © 2014 Elsevier Ltd. All rights reserved

    Nanostructuring thin polymer films with optical near fields.

    No full text
    In the present work, we report on the application of optical near fields to nanostructuring of poly(trimethylene terephthalate) (PTT) thin films. By exposure to a single ultraviolet nanosecond laser pulse, the spatial intensity modulation of the near-field distribution created by a silica microsphere is imprinted into the films. Setting different angles of incidence of the laser, elliptical or circular periodic ring patterns can be produced with periods as small as half the laser wavelength used. These highly complex patterns show optical and topographical contrast and can be characterized by optical microscopy (OM) and atomic force microscopy (AFM). We demonstrate the key role of the laser wavelength and coherence length in achieving smooth, extended patterns in PTT by using excimer laser (193 nm) and Nd:YAG laser (266 nm) pulses. Reference experiments performed in Ge2Sb2Te5 (GST) demonstrate that nanopatterning in PTT is triggered by ablation as opposed to GST, in which nanopatterning originates from laser-induced phase change, accompanied by a small topographical contrast. The experiments presented in this work demonstrate the suitability of optical near fields for structuring polymer films, opening up new possibilities for nanopatterning and paving the way for potential applications where optical near fields and polymer nanostructures are involved

    Legal probabilism: an epistemological dissent

    Get PDF
    Susan Haack, University of Miami, organizes her lecture in the following points: 1. Standards of proof are best understood as degrees of warrant. 2. Degrees of warrant aren't mathematical probabilities. 3. Commonwealth v. Sacco and Vanzetti: epistemology trumps probability theory. 4. People v. Collins: epistemology trumps probability agai
    corecore