289 research outputs found

    DIOS: the dark baryon exploring mission

    Full text link
    DIOS (Diffuse Intergalactic Oxygen Surveyor) is a small satellite aiming for a launch around 2020 with JAXA's Epsilon rocket. Its main aim is a search for warm-hot intergalactic medium with high-resolution X-ray spectroscopy of redshifted emission lines from OVII and OVIII ions. The superior energy resolution of TES microcalorimeters combined with a very wide field of view (30--50 arcmin diameter) will enable us to look into gas dynamics of cosmic plasmas in a wide range of spatial scales from Earth's magnetosphere to unvirialized regions of clusters of galaxies. Mechanical and thermal design of the spacecraft and development of the TES calorimeter system are described. We also consider revising the payload design to optimize the scientific capability allowed by the boundary conditions of the small mission.Comment: 10 pages, 11 figures, Proceedings of the SPIE Astronomical Instrumentation : Space Telescopes and Instrumentation 2014: Ultraviolet to Gamma Ra

    IXO/XMS Detector Trade-Off Study

    Get PDF
    This document presents the outcome of the detector trade-off for the XMS instrument on IXO. This trade-off is part of the Cryogenic instrument Phase-A study as proposed to ESA in the Declaration of Interest SRONXMS-PL-2009-003 dated June 6, 2009. The detector consists of two components: a core array for the highest spectral resolution and an outer array to increase the field of view substantially with modest increase in the number of read-out channels. Degraded resolution of the outer array in comparison with the core array is accepted in order to make this scheme possible. The two detector components may be a single unit or separate units. These arrays comprise pixels and the components that allow them to be arrayed. Each pixel comprises a thermometer, an absorber, and the thermal links between them and to the rest of the array. These links may be interfaces or distinct components. The array infrastructure comprises the mechanical structure of the array, the arrangement of the leads, and features added to improve the integrated thermal properties of the array in the focal-plane assembly

    A Catalog of Candidate Intermediate-luminosity X-ray Objects

    Full text link
    ROSAT, and now Chandra, X-ray images allow studies of extranuclear X-ray point sources in galaxies other than our own. X-ray observations of normal galaxies with ROSAT and Chandra have revealed that off-nuclear, compact, Intermediate-luminosity (Lx[2-10 keV] >= 1e39 erg/s) X-ray Objects (IXOs, a.k.a. ULXs [Ultraluminous X-ray sources]) are quite common. Here we present a catalog and finding charts for 87 IXOs in 54 galaxies, derived from all of the ROSAT HRI imaging data for galaxies with cz <= 5000 km/s from the Third Reference Catalog of Bright Galaxies (RC3). We have defined the cutoff Lx for IXOs so that it is well above the Eddington luminosity of a 1.4 Msun black hole (10^38.3 erg/s), so as not to confuse IXOs with ``normal'' black hole X-ray binaries. This catalog is intended to provide a baseline for follow-up work with Chandra and XMM, and with space- and ground-based survey work at wavelengths other than X-ray. We demonstrate that elliptical galaxies with IXOs have a larger number of IXOs per galaxy than non-elliptical galaxies with IXOs, and note that they are not likely to be merely high-mass X-ray binaries with beamed X-ray emission, as may be the case for IXOs in starburst galaxies. Approximately half of the IXOs with multiple observations show X-ray variability, and many (19) of the IXOs have faint optical counterparts in DSS optical B-band images. Follow-up observations of these objects should be helpful in identifying their nature.Comment: 29 pages, ApJS, accepted (catalog v2.0) (full resolution version of paper and future releases of catalog at http://www.xassist.org/ixocat_hri

    Jupiter's X-ray and EUV auroras monitored by Chandra, XXM-Newton, and Hisaki satellite

    Get PDF
    Jupiter's X-ray auroral emission in the polar cap region results from particles which have undergone strong field-aligned acceleration into the ionosphere. The origin of precipitating ions and electrons and the time variability in the X-ray emission are essential to uncover the driving mechanism for the high-energy acceleration. The magnetospheric location of the source field line where the X-ray is generated is likely affected by the solar wind variability. However, these essential characteristics are still unknown because the long-term monitoring of the X-rays and contemporaneous solar wind variability has not been carried out. In April 2014, the first long-term multiwavelength monitoring of Jupiter's X-ray and EUV auroral emissions was made by the Chandra X-ray Observatory, XMM-Newton, and Hisaki satellite. We find that the X-ray count rates are positively correlated with the solar wind velocity and insignificantly with the dynamic pressure. Based on the magnetic field mapping model, a half of the X-ray auroral region was found to be open to the interplanetary space. The other half of the X-ray auroral source region is magnetically connected with the prenoon to postdusk sector in the outermost region of the magnetosphere, where the Kelvin-Helmholtz (KH) instability, magnetopause reconnection, and quasiperiodic particle injection potentially take place. We speculate that the high-energy auroral acceleration is associated with the KH instability and/or magnetopause reconnection. This association is expected to also occur in many other space plasma environments such as Saturn and other magnetized rotators

    Suzaku X-Ray Imaging and Spectroscopy of Cassiopeia A

    Full text link
    Suzaku X-ray observations of a young supernova remnant, Cassiopeia A, were carried out. K-shell transition lines from highly ionized ions of various elements were detected, including Chromium (Cr-Kalpha at 5.61 keV). The X-ray continuum spectra were modeled in the 3.4--40 keV band, summed over the entire remnant, and were fitted with a simplest combination of the thermal bremsstrahlung and the non-thermal cut-off power-law models. The spectral fits with this assumption indicate that the continuum emission is likely to be dominated by the non-thermal emission with a cut-off energy at > 1 keV. The thermal-to-nonthermal fraction of the continuum flux in the 4-10 keV band is best estimated as ~0.1. Non-thermal-dominated continuum images in the 4--14 keV band were made. The peak of the non-thermal X-rays appears at the western part. The peak position of the TeV gamma-rays measured with HEGRA and MAGIC is also shifted at the western part with the 1-sigma confidence. Since the location of the X-ray continuum emission was known to be presumably identified with the reverse shock region, the possible keV-TeV correlations give a hint that the accelerated multi-TeV hadrons in Cassiopeia A are dominated by heavy elements in the reverse shock region.Comment: Publ. Astron. Soc. Japan 61, pp.1217-1228 (2009

    Suzaku Observations of Charge Exchange Emission from Solar System Objects

    Get PDF
    Recent results of charge exchange emission from solar system objects observed with the Japanese Suzaku satellite are reviewed. Suzaku is of great importance to investigate diffuse X-ray emission like the charge exchange from planetary exospheres and comets. The Suzaku studies of Earth's exosphere, Martian exosphere, Jupiter's aurorae, and comets are overviewed

    Simultaneous Swift X-ray and UV views of comet C/2007 N3 (Lulin)

    Full text link
    We present an analysis of simultaneous X-Ray and UV observations ofcomet C/2007 N3 (Lulin) taken on three days between January 2009 and March 2009 using the Swift observatory. For our X-ray observations, we used basic transforms to account for the movement of the comet to allow the combination of all available data to produce an exposure-corrected image. We fit a simple model to the extracted spectrum and measured an X-ray flux of 4.3+/-1.3 * 10^-13 ergs cm-2 s-1 in the 0.3 to 1.0 keV band. In the UV, we acquired large-aperture photometry and used a coma model to derive water production rates given assumptions regarding the distribution of water and its dissociation into OH molecules about the comet's nucleus. We compare and discuss the X-ray and UV morphology of the comet. We show that the peak of the cometary X-ray emission is offset sunward of the UV peak emission, assumed to be the nucleus, by approximately 35,000 km. The offset observed, the shape of X-ray emission and the decrease of the X-ray emission comet-side of the peak, suggested that the comet was indeed collisionally thick to charge exchange, as expected from our measurements of the comet's water production rate (6--8 10^28 mol. s-1). The X-ray spectrum is consistent with solar wind charge exchange emission, and the comet most likely interacted with a solar wind depleted of very highly ionised oxygen. We show that the measured X-ray lightcurve can be very well explained by variations in the comet's gas production rates, the observing geometry and variations in the solar wind flux.Comment: Paper accepted for publication in Astronomy and Astrophysics, 6 March 2012, 12 pages, 8 colour figures, one tabl

    A Chandra ACIS Study of the Young Star Cluster Trumpler 15 in Carina and Correlation with Near-infrared Sources

    Full text link
    Using the highest-resolution X-ray observation of the Trumpler 15 star cluster taken by the Chandra X-ray Observatory, we estimate the total size of its stellar population by comparing the X-ray luminosity function of the detected sources to a calibrator cluster, and identify for the first time a significant fraction (~14%) of its individual members. The highest-resolution near-IR observation of Trumpler 15 (taken by the HAWK-I instrument on the VLT) was found to detect most of our X-ray selected sample of cluster members, with a K-excess disk frequency of 3.8+-0.7%. The near-IR data, X-ray luminosity function, and published spectral types of the brightest members support a cluster age estimate (5-10 Myr) that is older than those for the nearby Trumpler 14 and Trumpler 16 clusters, and suggest that high-mass members may have already exploded as supernovae. The morphology of the inner ~0.7 pc core of the cluster is found to be spherical. However, the outer regions (beyond 2 pc) are elongated, forming an `envelope' of stars that, in projection, appears to connect Trumpler 15 to Trumpler 14; this morphology supports the view that these clusters are physically associated. Clear evidence of mass segregation is seen. This study appears in a Special Issue of the ApJS devoted to the Chandra Carina Complex Project (CCCP), a 1.42 square degree Chandra X-ray survey of the Great Nebula in Carina.Comment: Accepted for the ApJS Special Issue on the Chandra Carina Complex Project (CCCP), scheduled for publication in May 2011. All 16 CCCP Special Issue papers are available at http://cochise.astro.psu.edu/Carina_public/special_issue.html through 2011 at least. 30 pages; 8 figures; 3 table

    Investigation of Diffuse Hard X-ray Emission from the Massive Star-Forming Region NGC 6334

    Full text link
    Chandra ACIS-I data of the molecular cloud and HII region complex NGC 6334 were analyzed. The hard X-ray clumps detected with ASCA (Sekimoto et al. 2000) were resolved into 792 point sources. After removing the point sources, an extended X-ray emission component was detected over a 5x9 pc2 region, with the 0.5-8 keV absorption-corrected luminosity of 2x10^33 erg/s. The contribution from faint point sources to this extended emission was estimated as at most ~20 %, suggesting that most of the emission is diffuse in nature. The X-ray spectrum of the diffuse emission was observed to vary from place to place. In tenuous molecular cloud regions with hydrogen column density of 0.5~1x10^22 cm-2, the spectrum can be represented by a thermal plasma model with temperatures of several keV. The spectrum in dense cloud cores exhibits harder continuum, together with higher absorption more than ~3x10^22 cm-2. In some of such highly obscured regions, the spectrum show extremely hard continua equivalent to a photon index of ~1, and favor non-thermal interpretation. These results are discussed in the context of thermal and non-thermal emissions, both powered by fast stellar winds from embedded young early-type stars through shock transitions.Comment: 43 pages, 14 figures, accepted for publication in ApJ, A full resolution ot the paper can be found at http://www.astro.isas.jaxa.jp/~ezoe/ngc6334/yezoe2005apj_chandra_ngc6334.pd
    • …
    corecore