659 research outputs found

    The role of mutation rate variation and genetic diversity in the architecture of human disease

    Get PDF
    Background We have investigated the role that the mutation rate and the structure of genetic variation at a locus play in determining whether a gene is involved in disease. We predict that the mutation rate and its genetic diversity should be higher in genes associated with disease, unless all genes that could cause disease have already been identified. Results Consistent with our predictions we find that genes associated with Mendelian and complex disease are substantially longer than non-disease genes. However, we find that both Mendelian and complex disease genes are found in regions of the genome with relatively low mutation rates, as inferred from intron divergence between humans and chimpanzees, and they are predicted to have similar rates of non-synonymous mutation as other genes. Finally, we find that disease genes are in regions of significantly elevated genetic diversity, even when variation in the rate of mutation is controlled for. The effect is small nevertheless. Conclusions Our results suggest that gene length contributes to whether a gene is associated with disease. However, the mutation rate and the genetic architecture of the locus appear to play only a minor role in determining whether a gene is associated with disease

    Evidence for Pervasive Adaptive Protein Evolution in Wild Mice

    Get PDF
    The relative contributions of neutral and adaptive substitutions to molecular evolution has been one of the most controversial issues in evolutionary biology for more than 40 years. The analysis of within-species nucleotide polymorphism and between-species divergence data supports a widespread role for adaptive protein evolution in certain taxa. For example, estimates of the proportion of adaptive amino acid substitutions (alpha) are 50% or more in enteric bacteria and Drosophila. In contrast, recent estimates of alpha for hominids have been at most 13%. Here, we estimate alpha for protein sequences of murid rodents based on nucleotide polymorphism data from multiple genes in a population of the house mouse subspecies Mus musculus castaneus, which inhabits the ancestral range of the Mus species complex and nucleotide divergence between M. m. castaneus and M. famulus or the rat. We estimate that 57% of amino acid substitutions in murids have been driven by positive selection. Hominids, therefore, are exceptional in having low apparent levels of adaptive protein evolution. The high frequency of adaptive amino acid substitutions in wild mice is consistent with their large effective population size, leading to effective natural selection at the molecular level. Effective natural selection also manifests itself as a paucity of effectively neutral nonsynonymous mutations in M. m. castaneus compared to humans

    Insights on the Evolution of Prolyl 3-Hydroxylation Sites from Comparative Analysis of Chicken and Xenopus Fibrillar Collagens

    Get PDF
    Recessive mutations that prevent 3-hydroxyproline formation in type I collagen have been shown to cause forms of osteogenesis imperfecta. In mammals, all A-clade collagen chains with a GPP sequence at the A1 site (P986), except α1(III), have 3Hyp at residue P986. Available avian, amphibian and reptilian type III collagen sequences from the genomic database (Ensembl) all differ in sequence motif from mammals at the A1 site. This suggests a potential evolutionary distinction in prolyl 3-hydroxylation between mammals and earlier vertebrates. Using peptide mass spectrometry, we confirmed that this 3Hyp site is fully occupied in α1(III) from an amphibian, Xenopus laevis, as it is in chicken. A thorough characterization of all predicted 3Hyp sites in collagen types I, II, III and V from chicken and xenopus revealed further differences in the pattern of occupancy of the A3 site (P707). In mammals only α2(I) and α2(V) chains had any 3Hyp at the A3 site, whereas in chicken all α-chains except α1(III) had A3 at least partially 3-hydroxylated. The A3 site was also partially 3-hydroxylated in xenopus α1(I). Minor differences in covalent cross-linking between chicken, xenopus and mammal type I and III collagens were also found as a potential index of evolving functional differences. The function of 3Hyp is still unknown but observed differences in site occupancy during vertebrate evolution are likely to give important clues

    A Selection Index for Gene Expression Evolution and Its Application to the Divergence between Humans and Chimpanzees

    Get PDF
    The importance of gene regulation in animal evolution is a matter of long-standing interest, but measuring the impact of selection on gene expression has proven a challenge. Here, we propose a selection index of gene expression as a straightforward method for assessing the mode and strength of selection operating on gene expression levels. The index is based on the widely used McDonald-Kreitman test and requires the estimation of four quantities: the within-species and between-species expression variances as well as the sequence heterozygosity and divergence of neutrally evolving sequences. We apply the method to data from human and chimpanzee lymphoblastoid cell lines and show that gene expression is in general under strong stabilizing selection. We also demonstrate how the same framework can be used to estimate the proportion of adaptive gene expression evolution

    Mistreatment of university students most common during medical studies

    Get PDF
    BACKGROUND: This study concerns the occurrence of various forms of mistreatment by staff and fellow students experienced by students in the Faculty of Medicine and the other four faculties of the University of Oulu, Finland. METHODS: A questionnaire with 51 questions on various forms of physical and psychological mistreatment was distributed to 665 students (451 females) after lectures or examinations and filled in and returned. The results were analysed by gender and faculty. The differences between the males and females were assessed statistically using a test for the equality of two proportions. An exact two-sided P value was calculated using a mid-P approach to Fisher's exact test (the null hypothesis being that there is no difference between the two proportions). RESULTS: About half of the students answering the questionnaire had experienced some form of mistreatment by staff during their university studies, most commonly humiliation and contempt (40%), negative or disparaging remarks (34%), yelling and shouting (23%), sexual harassment and other forms of gender-based mistreatment (17%) and tasks assigned as punishment (13%). The students in the Faculty of Medicine reported every form of mistreatment more commonly than those in the Faculties of Humanities, Education, Science and Technology. Experiences of mistreatment varied, but clear messages regarding its patterns were to be found in each faculty. Female students reported more instances of mistreatment than males and were more disturbed by them. Professors, lecturers and other staff in particular mistreated female students more than they mistreated males. About half of the respondents reported some form of mistreatment by their fellow students. CONCLUSION: Students in the Faculty of Medicine reported the greatest amount of mistreatment. If a faculty mistreats its students, its success in the main tasks of universities, research, teaching and learning, will be threatened. The results challenge university teachers, especially in faculties of medicine, to evaluate their ability to create a safe environment conducive to learning

    Aquatic Ecosystems are the Largest Source of Methane on Earth

    Full text link
    Methane concentrations in the atmosphere have almost tripled since the industrial revolution, contributing 16% of the additional radiative forcing by anthropogenic greenhouse gas emissions. Aquatic ecosystems are an important but poorly constrained source of methane (CH4) to the atmosphere. Here, we present the first global methane emission assessment from all major natural, impacted and human-made aquatic ecosystems including streams and rivers, freshwater lakes and reservoirs, aquaculture ponds, estuaries, coastal vegetated wetlands (mangroves, salt-marshes, seagrasses), tidal flats, continental shelves and the open ocean, in comparison to recent estimates from natural wetlands and rice paddies. We find that aquatic systems are the largest source of methane globally with contributions from small lakes and coastal ocean ecosystems higher than previously estimated. We suggest that increased biogenic methane from aquatic ecosystems due to a combined effect of climate-feedbacks and human disturbance, may contribute more than expected to rising methane concentrations in the atmosphere

    Quantifying Adaptive Evolution in the Drosophila Immune System

    Get PDF
    It is estimated that a large proportion of amino acid substitutions in Drosophila have been fixed by natural selection, and as organisms are faced with an ever-changing array of pathogens and parasites to which they must adapt, we have investigated the role of parasite-mediated selection as a likely cause. To quantify the effect, and to identify which genes and pathways are most likely to be involved in the host–parasite arms race, we have re-sequenced population samples of 136 immunity and 287 position-matched non-immunity genes in two species of Drosophila. Using these data, and a new extension of the McDonald-Kreitman approach, we estimate that natural selection fixes advantageous amino acid changes in immunity genes at nearly double the rate of other genes. We find the rate of adaptive evolution in immunity genes is also more variable than other genes, with a small subset of immune genes evolving under intense selection. These genes, which are likely to represent hotspots of host–parasite coevolution, tend to share similar functions or belong to the same pathways, such as the antiviral RNAi pathway and the IMD signalling pathway. These patterns appear to be general features of immune system evolution in both species, as rates of adaptive evolution are correlated between the D. melanogaster and D. simulans lineages. In summary, our data provide quantitative estimates of the elevated rate of adaptive evolution in immune system genes relative to the rest of the genome, and they suggest that adaptation to parasites is an important force driving molecular evolution

    “Excellence R Us”: university research and the fetishisation of excellence

    Get PDF
    The rhetoric of “excellence” is pervasive across the academy. It is used to refer to research outputs as well as researchers, theory and education, individuals and organisations, from art history to zoology. But does “excellence” actually mean anything? Does this pervasive narrative of “excellence” do any good? Drawing on a range of sources we interrogate “excellence” as a concept and find that it has no intrinsic meaning in academia. Rather it functions as a linguistic interchange mechanism. To investigate whether this linguistic function is useful we examine how the rhetoric of excellence combines with narratives of scarcity and competition to show that the hypercompetition that arises from the performance of “excellence” is completely at odds with the qualities of good research. We trace the roots of issues in reproducibility, fraud, and homophily to this rhetoric. But we also show that this rhetoric is an internal, and not primarily an external, imposition. We conclude by proposing an alternative rhetoric based on soundness and capacity-building. In the final analysis, it turns out that that “excellence” is not excellent. Used in its current unqualified form it is a pernicious and dangerous rhetoric that undermines the very foundations of good research and scholarship

    Aquatic Ecosystems are the Most Uncertain but Potentially Largest Source of Methane on Earth

    Full text link
    Atmospheric methane is a potent greenhouse gas that has tripled in concentration since pre-industrial times. The causes of rising methane concentrations are poorly understood given its multiple sources and complex biogeochemistry. Natural and human-made aquatic ecosystems, including wetlands, are potentially the largest single source of methane, but their total emissions relative to other sources have not been assessed. Based on a new synthesis of inventory, remote sensing and modeling efforts, we present a bottom-up estimate of methane emissions from streams and rivers, freshwater lakes and reservoirs, estuaries, coastal wetlands (mangroves, seagrasses, salt-marshes), intertidal flats, aquaculture ponds, continental shelves, along with recently published estimates of global methane emissions from freshwater wetlands, rice paddies, the continental slope and open ocean. Our findings emphasize the high variability of aquatic methane fluxes and a possibly skewed distribution of currently available data, making global estimates sensitive to statistical assumptions. Mean emissions make aquatic ecosystems the largest source of methane globally (53% of total global methane emissions). Median emissions are 42% of the total global methane emissions. We argue that these emissions will likely increase due to urbanization, eutrophication and climate change
    corecore