237 research outputs found
Phenomenology of the Deuteron Electromagnetic Form Factors
A rigorous extraction of the deuteron charge form factors from tensor
polarization data in elastic electron-deuteron scattering, at given values of
the 4-momentum transfer, is presented. Then the world data for elastic
electron-deuteron scattering is used to parameterize, in three different ways,
the three electromagnetic form factors of the deuteron in the 4-momentum
transfer range 0-7 fm^-1. This procedure is made possible with the advent of
recent polarization measurements. The parameterizations allow a
phenomenological characterization of the deuteron electromagnetic structure.
They can be used to remove ambiguities in the form factors extraction from
future polarization data.Comment: 18 pages (LaTeX), 2 figures Feb. 25: minor changes of content and in
Table
An assessment of Evans' unified field theory I
Evans developed a classical unified field theory of gravitation and
electromagnetism on the background of a spacetime obeying a Riemann-Cartan
geometry. This geometry can be characterized by an orthonormal coframe theta
and a (metric compatible) Lorentz connection Gamma. These two potentials yield
the field strengths torsion T and curvature R. Evans tried to infuse
electromagnetic properties into this geometrical framework by putting the
coframe theta to be proportional to four extended electromagnetic potentials A;
these are assumed to encompass the conventional Maxwellian potential in a
suitable limit. The viable Einstein-Cartan(-Sciama-Kibble) theory of gravity
was adopted by Evans to describe the gravitational sector of his theory.
Including also the results of an accompanying paper by Obukhov and the author,
we show that Evans' ansatz for electromagnetism is untenable beyond repair both
from a geometrical as well as from a physical point of view. As a consequence,
his unified theory is obsolete.Comment: 39 pages of latex, modified because of referee report, mistakes and
typos removed, partly reformulated, taken care of M.W.Evans' rebutta
A precise measurement of the deuteron elastic structure function A(Q^2)
The A(Q^2) structure function in elastic electron-deuteron scattering was
measured at six momentum transfers Q^2 between 0.66 and 1.80 (GeV/c)^2 in Hall
C at Jefferson Laboratory. The scattered electrons and recoil deuterons were
detected in coincidence, at a fixed deuteron angle of 60.5 degrees. These new
precise measurements resolve discrepancies between older sets of data. They put
significant constraints on existing models of the deuteron electromagnetic
structure, and on the strength of isoscalar meson exchange currents.Comment: 3 LaTeX pages plus 2 PS figure
Broadband parametric amplification for multiplexed SiMOS quantum dot signals
Spins in semiconductor quantum dots hold great promise as building blocks of
quantum processors. Trapping them in SiMOS transistor-like devices eases future
industrial scale fabrication. Among the potentially scalable readout solutions,
gate-based dispersive radiofrequency reflectometry only requires the already
existing transistor gates to readout a quantum dot state, relieving the need
for additional elements. In this effort towards scalability, traveling-wave
superconducting parametric amplifiers significantly enhance the readout
signal-to-noise ratio (SNR) by reducing the noise below typical cryogenic
low-noise amplifiers, while offering a broad amplification band, essential to
multiplex the readout of multiple resonators. In this work, we demonstrate a
3GHz gate-based reflectometry readout of electron charge states trapped in
quantum dots formed in SiMOS multi-gate devices, with SNR enhanced thanks to a
Josephson traveling-wave parametric amplifier (JTWPA). The broad, tunable 2GHz
amplification bandwidth combined with more than 10dB ON/OFF SNR improvement of
the JTWPA enables frequency and time division multiplexed readout of interdot
transitions, and noise performance near the quantum limit. In addition, owing
to a design without superconducting loops and with a metallic ground plane, the
JTWPA is flux insensitive and shows stable performances up to a magnetic field
of 1.2T at the quantum dot device, compatible with standard SiMOS spin qubit
experiments
Measurement of Tensor Polarization in Elastic Electron-Deuteron Scattering at Large Momentum Transfer
Tensor polarization observables (t20, t21 and t22) have been measured in
elastic electron-deuteron scattering for six values of momentum transfer
between 0.66 and 1.7 (GeV/c)^2. The experiment was performed at the Jefferson
Laboratory in Hall C using the electron HMS Spectrometer, a specially designed
deuteron magnetic channel and the recoil deuteron polarimeter POLDER. The new
data determine to much larger Q^2 the deuteron charge form factors G_C and G_Q.
They are in good agreement with relativistic calculations and disagree with
pQCD predictions.Comment: 5 pages, 4 figures, for associated informations, see
http://isnwww.in2p3.fr/hadrons/t20/t20_ang.html clarification about several
topics, one figure has been had, extraction of form factors use AQ
interpolation in our Q2 range onl
Directional Fano resonances in light scattering by a high refractive index dielectric sphere
We report the experimental evidence of directional Fano resonances at the scattering of a linearly polarized electromagnetic plane wave by a homogeneous dielectric sphere with a high refractive index and low losses. We observe a typical asymmetric Fano profile for the intensity scattered in practically any given direction, while the overall extinction cross section remains Lorentzian. The phenomenon originates in the interference of the selectively excited electric dipolar and quadrupolar modes. The selectivity of the excitation is achieved by the proper choice of the frequency of the incident wave. Owing to the scaling invariance of the Maxwell equations, in these experiments we mimic the scattering of the visible and near IR radiation by a nanoparticle made of common semiconductor materials (Si, Ge, GaAs, GaP) by the equivalent scattering of a spherical particle of 18 mm in diameter in the microwave range. The theory developed to explain the experiments extends the conventional Fano approach to the case when both interfering partitions are resonant. A perfect agreement between the experiment and the theory is demonstrated. © 2016 American Physical Society.Acknowledgments. This research has been supported by MICINN (Spanish Ministry of Science and Innovation, Project No. FIS2013-45854-P). We also acknowledge the opportunity provided by the Centre Commun de Ressources en Microondeto use its fully equipped anechoic chamber
- …